Brock University Undergraduate Calendar

COURSES

Aboriginal Education (ABED)

Tecumseh Centre for Aboriginal Research and Education (ABST)

Aboriginal Teacher Education (ABTE)

Accounting (ACTG)

Adult Education (ADED)

Business Administration (ADMI)

Academic English as Subsequent Language (AESL)

Applied Computing (APCO)

Arabic (ARAB)

Astronomy (ASTR)

Biochemistry (BCHM)

Biology (BIOL)

Biophysics (BPHY)

Biotechnology (BTEC)

Canadian Studies (CANA)

Chemistry (CHEM)

Community Health Sciences (CHSC)

Child and Youth Studies (CHYS)

Classics (CLAS)

Communications Studies (COMM)

Computer Science (COSC)

Dramatic Arts (DART)

Economics (ECON)

Education (EDUC)

English (ENGL)

Entrepreneurial Studies (ENTR)

Earth Sciences (ERSC)

Education Science (ESCI)

Ethics (ETHC)

Film (FILM)

Finance (FNCE)

French (FREN)

Geography (GEOG)

German (GERM)

Greek (GREE)

History (HIST)

Interactive Arts and Science (IASC)

Iberian and Latin American Studies (IBLA)

Intercultural Studies (INTC)

Italian (ITAL)

Information Technology Information Systems (ITIS)

Japanese (JAPA)

Labour Studies (LABR)

Liberal Arts (LART)

Latin (LATI)

Linguistics (LING)

Mandarin Chinese (MAND)

Medieval and Renaissance Studies (MARS)

Mathematics (MATH)

Management (MGMT)

Marketing (MKTG)

Music (MUSI)

Neuroscience (NEUR)

Nursing (NUSC)

Organizational Behaviour and Human Relations (OBHR)

Oenology and Viticulture (OEVI)

Operations Management (OPER)

Popular Culture (PCUL)

Physical Education and Kinesiology (PEKN)

Philosophy (PHIL)

Physics (PHYS)

Political Science (POLI)

Portuguese (PORT)

Psychology (PSYC)

Recreation and Leisure Studies (RECL)

Russian (RUSS)

Science (SCIE)

Studies in Comparative Literatures and Cultures (SCLC)

Sociology (SOCI)

Spanish (SPAN)

Sport Management (SPMA)

Studies in Arts and Culture (STAC)

Swahili (SWAH)

Tourism and Environment (TREN)

Visual Arts (VISA)

Women's Studies (WISE)

Writing (WRIT)

Physics Courses

PHYS 0N01

Co-op Work Placement I

First co-op placement (4 months) with an approved employer.

Restriction: open to PHYS Co-op students.

PHYS 0N02

Co-op Work Placement II

Second co-op placement (4 months) with an approved employer.

Restriction: open to PHYS Co-op students.

PHYS 0N03

Co-op Work Placement III

Third co-op placement (4 months) with an approved employer.

Restriction: open to PHYS Co-op students.

PHYS 0N04

Co-op Work Placement IV

Co-op placement (4 months) with an approved employer.

Restriction: open to PHYS Co-op students.

PHYS 0N05

Co-op Work Placement V

Co-op placement (4 months) with an approved employer.

Restriction: open to PHYS Co-op students.

PHYS 1P21

Mechanics and Waves

Kinematics, Newton's laws and their applications to equilibrium and dynamics with examples from biomechanics; special relativity.

Lectures, 3 hours per week; tutorial, 1 hour per week.

Note: students may not concurrently register in PHYS 1P91.

Completion of this course will replace previously assigned grade and credit obtained in PHYS 1P91.

PHYS 1P22

Electromagnetism, Optics and Modern Physics

Charges and fields, electric currents and circuits, electromagnetic waves and wave nature of light, elements of modern physics.

Lectures, 3 hours per week; tutorial, 1 hour per week.

Prerequisite(s): PHYS 1P21 or permission of the instructor.

Note: students may not concurrently register in PHYS 1P92.

Completion of this course will replace previously assigned grade and credit obtained in PHYS 1P92.

PHYS 1P23

Fluids, Heat, Light and Sound

Fluids in equilibrium, surface tension and capillary action; fluids in motion, viscosity and turbulent flow. Heat and temperature, elements of kinetic theory and the laws of thermodynamics. Geometrical optics, waves and sound.

Lectures, 3 hours per week; tutorial, 1 hour per week.

Note: students may not concurrently register in PHYS 1P93.

Completion of this course will replace previously assigned grade and credit obtained in PHYS 1P93.

PHYS 1P91

Mechanics and Waves with Laboratory

Combination of lectures and tutorials in PHYS 1P21 with a laboratory session.

Lectures, 3 hours per week; tutorial, 1 hour per week; lab, alternating weeks, 3 hours per week.

Note: students may not concurrently register in PHYS 1P21.

Completion of this course will replace previously assigned grade and credit obtained in PHYS 1P21.

PHYS 1P92

Electromagnetism, Optics and Modern Physics with Laboratory

Combination of lectures and tutorials in PHYS 1P22 with a laboratory session.

Lectures, 3 hours per week; tutorial, 1 hour per week; lab, alternating weeks, 3 hours per week.

Prerequisite(s): PHYS 1P91 or permission of the instructor.

Note: students may not concurrently register in PHYS 1P22.

Completion of this course will replace previously assigned grade and credit obtained in PHYS 1P22.

PHYS 1P93

Fluids, Heat, Light and Sound With Laboratory

Combination of lectures and tutorials in PHYS 1P23 with a laboratory session.

Lectures, 3 hours per week; tutorial, 1 hour per week; lab, alternating weeks, 3 hours per week.

Note: students may not concurrently register in PHYS 1P23.

Completion of this course will replace previously assigned grade and credit obtained in PHYS 1P23.

PHYS 2C01

Co-op Reflective Learning and Integration I

Provide student with the opportunity to apply what they've learned in their academic studies through career-oriented work experiences at employer sites.

Restriction: open to PHYS Co-op students.

Prerequisite(s): SCIE 0N90.

Corequisite(s): PHYS 0N01.

Note: students will be required to prepare learning objectives, participate in a site visit, write a work term report and receive a successful work term performance evaluation.

PHYS 2C02

Co-op Reflective Learning and Integration II

Provide student with the opportunity to apply what they've learned in their academic studies through career-oriented work experiences at employer sites.

Restriction: open to PHYS Co-op students.

Prerequisite(s): SCIE 0N90.

Corequisite(s): PHYS 0N02.

Note: students will be required to prepare learning objectives, participate in a site visit, write a work term report and receive a successful work term performance evaluation.

PHYS 2C03

Co-op Reflective Learning and Integration III

Provide student with the opportunity to apply what they've learned in their academic studies through career-oriented work experiences at employer sites.

Restriction: open to PHYS C-op students.

Prerequisite(s): SCIE 0N90.

Corequisite(s): PHYS 0N03.

Note: students will be required to prepare learning objectives, participate in a site visit, write a work term report and receive a successful work term performance evaluation.

PHYS 2C04

Co-op Reflective Learning and Integration IV

Provide student with the opportunity to apply what they've learned in their academic studies through career-oriented work experiences at employer sites.

Restriction: open to PHYS Co-op students.

Prerequisite(s): SCIE 0N90.

Corequisite(s): PHYS 0N04.

Note: students will be required to prepare learning objectives, participate in a site visit, write a work term report and receive a successful work term performance evaluation.

PHYS 2C05

Co-op Reflective Learning and Integration V

Provide student with the opportunity to apply what they've learned in their academic studies through career-oriented work experiences at employer sites.

Restriction: open to PHYS Co-op students.

Prerequisite(s): SCIE 0N90.

Corequisite(s): PHYS 0N05.

Note: students will be required to prepare learning objectives, participate in a site visit, write a work term report and receive a successful work term performance evaluation.

PHYS 2P02

Introduction to Medical Physics

Physical and chemical interactions of ionizing radiations and their biological effects, structural imaging (magnetic resonance imaging, ultrasound, computed tomography and optical microscopy); nuclear medicine, therapeutic applications of radiation.

Lectures, 3 hours per week; tutorial, 1 hour per week.

Prerequisite(s): one of 4U/M PHYS (SPH4U), PHYS 1P22, 1P23, 1P92, 1P93.

PHYS 2P20

Introductory Mechanics

Mechanics of particles and systems of particles by the Newtonian method; conservation of linear momentum, angular momentum and energy; elementary dynamics of rigid bodies; oscillators; motion under central forces; selected applications.

Lectures, problem sessions, 3 hours per week; lab, tutorial, 3 hours per week.

Prerequisite(s): PHYS 1P21 or 1P91 (recommended); one of PHYS 1P22, 1P23, 1P92 (recommended), 1P93; MATH 1P01 and 1P02.

PHYS 2P31

Analog Electronics

Conduction in metals and semi-conductors; circuit analysis; semi-conductor junction, diode and transistor; rectification, switching and amplification; operational amplifiers, active filters; laboratory instruments.

Lectures, lab, 6 hours per week.

Prerequisite(s): PHYS 1P21 or 1P91 (recommended); one of PHYS 1P22, 1P23, 1P92 (recommended), 1P93; one MATH credit or permission of the instructor.

Note: no previous course in electricity/magnetism/electronics is required. Secondary school algebra and some basic calculus will be used in the quantitative sections.

PHYS 2P32

Digital Electronics

Principles of digital electronics; combinatorial logic and circuits; sequential circuits, counters; digital computing and control; analog-to-digital conversion; signal sampling; elements of computational science; an introduction to programming.

Lectures, lab, 6 hours per week.

Prerequisite(s): PHYS 1P21 or 1P91 (recommended); one of PHYS 1P22, 1P23, 1P92 (recommended), 1P93; one MATH credit or permission of the instructor.

PHYS 2P50

Modern Physics

Special relativity, photons, the wave-particle aspects of electromagnetic radiation and matter; introduction to wave mechanics; the hydrogen atom and atomic line spectra; orbital and spin angular momenta; lasers.

Lectures, tutorial, 4 hours per week.

Prerequisite(s): PHYS 1P21 or 1P91 (recommended); one of PHYS 1P22, 1P23, 1P92 (recommended), 1P93; MATH 1P01 and 1P02.

PHYS 2P51

Introduction to Classical and Modern Optics

Geometrical and wave optics, reflection, refraction, lenses, matrix methods, aberrations, gradient index phenomena including fibre optics, interference, coherence, holography, Fraunhofer and Fresnel diffraction, polarization.

Lectures, lab, 6 hours per week.

Prerequisite(s): PHYS 1P21 or 1P91 (recommended); one of PHYS 1P22, 1P23, 1P92 (recommended), 1P93; MATH 1P01 and 1P02.

PHYS 3P02

Cellular Biophysics

Introduction to the molecular biophysics of cellular membranes, structure and function of the major cell components (lipids, proteins and carbohydrates), experimental physical techniques, photobiology, biological electrokinetics, bioinformatics, biomechanics, and biomimetics.

Lectures, 3 hours per week; lab, alternate week, 4 hours per week.

Prerequisite(s): PHYS 2P31 or permission of the instructor.

PHYS 3P35

Electromagnetism I

Electric field, divergence and curl of electrostatic field; relation between electric work and energy; conductors; application of Laplace's and Poisson's equation in electrostatics; electrostatic field in matter; field in polarized object and linear dielectric.

Lectures, 3 hours per week.

Prerequisite(s): MATH 2F05, or MATH 2P03 and 2P08.

PHYS 3P36

Electromagnetism II

Magnetostatics, divergence and curl of magnetic field; magnetic vector potential; magnetic field in matter; magnetization; field of magnetic object; magnetic field inside of linear and non-linear media; electrodynamics; Ohm's law; Faraday's law and Maxwell equations; energy and momentum in electrodynamics; electromagnetic waves.

Lectures, 3 hours per week.

Prerequisite(s): PHYS 3P35.

PHYS 3P41

Statistical Physics I

Introduction to probability distribution functions, accessible states, entropy, temperature, partition functions and relations to thermodynamic functions.

Lectures, 3 hours per week; tutorial, 1 hour per week.

Prerequisite(s): PHYS 2P50.

PHYS 3P70

Introduction to Quantum Mechanics

Wave particle dualism, Schrodinger equation, solution of simple one-dimensional barrier problems and the harmonic oscillator, hydrogen atom, angular momentum theory, introduction to perturbation theory and variational methods.

Lectures, lab/problem sessions, 4 hours per week.

Prerequisite(s): PHYS 2P50; MATH 2F05, or MATH 2P03 and 2P08.

PHYS 3P90

Classical Mechanics

Advanced treatment of the mechanics of particles and of rigid bodies; Lagrangian and Hamiltonian methods; Poisson brackets, applications to the theory of small oscillators and central force motions, elements of chaotic motions.

Lectures, 3 hours per week.

Prerequisite(s): PHYS 2P20; MATH 2F05, or MATH 2P03 and 2P08.

Completion of this course will replace previously assigned grade and credit obtained in PHYS 3P20.

PHYS 3P91

Experimental Physics I

Laboratory experiments to be selected from atomic physics, nuclear physics, solid state physics.

Lab, 1 day per week.

Prerequisite(s): PHYS 2P50 or permission of the instructor.

PHYS 3P92

Experimental Physics (Electronics) II

Operational amplifiers, converters, switches, microcomputers and their application to physical measurements.

Lab, 1 day per week.

Prerequisite(s): PHYS 2P31 or permission of the instructor.

Note: PHYS 2P32 recommended.

PHYS 3P93

Solid-State Devices

Principles of operation of solid-state devices, from the point of view of the quantum theory; electronic bands and conduction in semiconductors; operation and manufacture of silicon and germanium diodes, junction and field effect transistors; thin-film deposition technology; special topics.

Lectures, lab, 6 hours per week.

Prerequisite(s): PHYS 3P70.

PHYS 4F90

Research Project I

Small experimental, theoretical or applied physics research project to be carried out under the supervision of a member of the department.

Restriction: open to PHYS (single or combined) and CAST majors with either a minimum of 14.0 overall credits, a minimum 70 percent major average and a minimum 60 percent non-major average or approval to year 4 (honours).

Note: the project may, under special circumstances, be started in the summer months. Students must consult with the Department Chair regarding their proposed program during the first week of lectures.

PHYS 4F91

Research Project II

Small experimental, theoretical or applied physics research project to be carried out under the supervision of a member of the department.

Restriction: open to PHYS (single or combined) majors with either a minimum of 14.0 overall credits, a minimum 70 percent major average and a minimum 60 percent non-major average or approval to year 4 (honours) and permission of the Department.

Prerequisite(s): PHYS 4F90.

Note: the project may, under special circumstances, be started in the summer months. Students must consult with the Department Chair regarding their proposed program during the first week of lectures. PHYS 4F90 and 4F91 may be taken concurrently.

#PHYS 4P09

Solitons and Nonlinear Wave Equations

(also offered as MATH 4P09)

Introduction to solitons. Travelling waves, nonlinear wave and evolution equations (Korteweg de Vries, Bousinesq, nonlinear Schrodinger, sine-Gordon), soliton solutions and their interaction properties, Lax pairs and construction of single and multi soliton solutions.

Lectures, 3 hours per week; lab/tutorial, 1 hour per week.

Prerequisite(s): one of MATH 3P09, 3P51, 3P52.

PHYS 4P30

Electromagnetic Waves

Electromagnetic wave propagation in vacuum, dielectrics, conductors and ionized gases; reflection, refraction, polarization at the plane boundary between two media; wave guide and transmission line propagation; dipole and quadrupole radiation fields; antenna systems; electromagnetic radiation pressure; transformation of the electromagnetic fields.

Lectures, problem sessions, 3 hours per week.

Prerequisite(s): PHYS 3P35, 3P36, MATH 3P08 and 3P09.

PHYS 4P41

Statistical Physics II

Fundamental postulates, equilibrium statistical mechanics and its relation to thermodynamics. Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics are derived and applied in appropriate physical situations of non-interacting and interacting particles; fluctuations; elementary treatment of transport theory.

Lectures, 3 hours per week; tutorial, 1 hour per week.

Prerequisite(s): PHYS 3P41, 3P70, MATH 3P08 and 3P09.

PHYS 4P51

Quantum Mechanics I

Postulates about states, observables, probabilities, change of state in a measurement, and time evolution. Dirac's bra and ket notation; representation and transformation theory. Two-level systems. Complete set of commuting observables and classification of states. Symmetries and their usage in classification of states.

Lectures, 3 hours per week.

Prerequisite(s): PHYS 3P70, MATH 3P08 and 3P09.

PHYS 4P52

Quantum Mechanics II

Operator methods in quantum mechanics, charged particles in electromagnetic field, angular momentum, variational method, time-independent and time-dependent perturbation theories, theory of scattering.

Lectures, 3 hours per week.

Prerequisite(s): PHYS 3P70, MATH 3P08 and 3P09.

PHYS 4P61

Nuclear Physics

Intrinsic properties of nuclei, nuclear binding energy; qualitative treatment of shell model; alpha, beta and gamma radioactivities, nuclear fission, characteristics of nuclear reactions.

Lectures, problem sessions, 3 hours per week.

Prerequisite(s): PHYS 2P50 and 3P70.

PHYS 4P62

Modern Wave Optics: Optical Tweezers to Atom Clouds

Optical lattices, spatial light modulators, evanescent waves and their applications from biology to ultracold atoms. Laser cooling and optical trapping. Manipulation of crystal properties by light. Optical patterns: tweezers, mirrors, funnels, bottles. Maple-based coursework.

Lectures, tutorial, 4 hours per week.

Prerequisite(s): PHYS 2P51 and MATH 2P03 or permission of the instructor.

PHYS 4P70

Condensed Matter Physics I

Crystal structures and crystal binding; the vibration of atoms in solids and the thermodynamics of solids; introduction to transport properties of solids.

Lectures, 3 hours per week; tutorial, 1 hour per week.

Prerequisite(s): PHYS 3P41 and 3P70.

PHYS 4P71

Condensed Matter Physics II

Energy bands in metals and semiconductors, dynamics of electrons, Fermi surfaces and transport properties of solids, magnetism, screening in electron gas, optical properties.

Lectures, 3 hours per week; tutorial, 1 hour per week.

Prerequisite(s): PHYS 4P70.

PHYS 4P92

Advanced Electronics Laboratory

Families of logic devices, selection and implementation techniques; synchronous and asynchronous sequential circuits; safety and physical constraints; programmable array logic designs; digital signal processing, optoelectronics; CAD; circuit layout.

Lab, 1 day per week.

Prerequisite(s): PHYS 3P92.

Note: completion of a project from design to a working device is required.

#PHYS 4P94

General Relativity and Black Holes

(also offered as MATH 4P94)

Review of Special Relativity and Minkowski space-time. Introduction to General Relativity theory including gravitation and the space-time metric, light cones, horizons, asymptotic flatness; energy-momentum of particles and light rays (geodesics). Static black holes (Schwarzschild metric), properties of light rays and particle orbits. Rotating black holes (Kerr metric).

Lectures, 3 hours, lab/tutorial 1 hour, per week.

Prerequisite(s): PHYS 2P20, 2P50 and MATH 2F05 or permission of the instructor.

PHYS 4V80-4V89

Special Topics

Examples of topics are relativity and cosmology; surface physics and electronic states in ordered and disordered systems.

Lectures, problem sessions, 4 hours per week.