Examples of Simplifying Negative Exponents and Fractions

Often in a course such as Math 1P01 or 1P05, when we need to perform a task (e.g., find the critical points of a function), we may need to simplify our expression to do so. This page contains examples of how to simplify fractions and negative exponents, which you as a student may encounter on either the Practice Test or Skills Test.

Example 1:

Simplify the following expression: $\frac{(x-y)^{-1}}{x^{-1}-y^{-1}}$
Important Note: $(x-y)^{-1} \neq x^{-1}-y^{-1}$ so unfortunately this does not simplify to 1 .
To simplify expressions involving negative exponents, we often use the fact that $x^{-b}=\frac{1}{x^{b}}$
So $\frac{(x-y)^{-1}}{x^{-1}-y^{-1}}$
$=\frac{\frac{1}{x-y}}{\frac{1}{x}-\frac{1}{y}}$
If we have fractions added or subtracted together like on the denominator, we can find a common base and see if that helps us.
$=\frac{\frac{1}{x-y}}{\frac{1}{x}\left(\frac{y}{y}\right)-\frac{1}{y}\left(\frac{x}{x}\right)}=\frac{\frac{1}{x-y}}{\frac{y}{x y}-\frac{x}{x y}}$
$=\frac{\frac{1}{x-y}}{x-x}$
We can then invert and multiply to simplify the double fraction.
$=\frac{1}{x-y}\left(\frac{x y}{y-x}\right)=\frac{1}{x-y}\left(\frac{-x y}{x-y}\right)=-\frac{x y}{(x-y)^{2}}$

Example 2:

Simplify: $2+\frac{2}{2+\frac{2}{2+3 x}}$
Here we can use a similar technique in simplifying by again bringing the addition or subtraction under a common denominator.

$$
\begin{aligned}
& =2+\frac{2}{\frac{2(2+3 x)}{2+3 x}+\frac{2}{2+3 x}} \\
& =2+\frac{\frac{2}{4+6 x+2}}{2+3 x}=2+\frac{\frac{2}{6+6 x}}{2+3 x}=2+\frac{2}{\frac{2(3+3 x)}{2+3 x}}
\end{aligned}
$$

Inverting and multiplying we get
$=2+\frac{2}{2}\left(\frac{2+3 x}{3+3 x}\right)=2+\frac{2+3 x}{3+3 x}$
We can now find a common denominator and further simplify.
$=\frac{2(3+3 x)}{3+3 x}+\frac{2+3 x}{3+3 x}=\frac{6+6 x+2+3 x}{3+3 x}=\frac{8+9 x}{3+3 x}$

