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Abstract—The paper gathers evidence showing different di-
mensions of the game of Go: the continuous and discrete nature
of the game and different types of relations between state
variables happening on ultra local, local, regional, and global
scales. Based on these observations a new continuous local model
for describing a board position is introduced. This includes the
identification of the basic variables describing a board position
and the formulation and solution of a dynamical system for their
computation. To be usable as a static evaluation function for a
game playing program at least group-wide (regional) aspects will
have to be incorporated.

I. I NTRODUCTION

When someone invests much time into a project, into
using a computer with exclusively one operating system, into
programming using only one programming language, or into
playing one specific game then the person is naturally biased,
and it is almost impossible to convince him or her that another
operating system is ‘better’ or that a different game is ‘harder’
or ‘more interesting’ (whatever that is supposed to mean).
In this contribution the author tries to do something exactly
like that: to justify the claim that the game of Go is different
from other board games, and that it shows features of complex
systems.

We will show that Go can be described along different and
fairly independent dimensions; that Go is a rich challenge
that can neither be ‘solved’ by a mathematical formula, nor
be played nearly perfectly by a single elegant computational
algorithm. The purpose of this paper is not to establish
superiority (in any sense) of one game over another, but to
analyse why computers do not play Go as well as, for example,
Chess. Statements will not be proven but justified by examples.

In section II it is argued that Go has inherently continu-
ous and discrete characteristics which suggest an intertwined
continuous-discrete problem solving technique like the one
introduced later in section VI.

In section III a different dimension of Go is discussed. It is
shown that there are (at least) four spatial types of relations
between points, stones and chains on the board.

The richness of Go also becomes apparent from the many
different solution strategies which have been tried so far.
Section V describes a few. A new approach to computer Go
is outlined in section VI.

More Go-specific content is given in the appendix. Special-
ist Go terminology set initalic in the text is explained there.
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II. CONTINUITY VERSUS DISCRETENESS

Although the game of Go is strictly speaking fully discrete
it nevertheless has partially continuous aspects which we will
refer to below simply as ‘continuous’ or ‘continuity’ although
they are of course only approximately so.

A. Continuous Aspects of Go

With two players alternating in making a move the game
definitely has discrete aspects. But Go also shows continuous
features, especially when the influence ofchainsmatters, and
when the number ofliberties is not crucial. Based on these
observations influence values at points and strength values of
chains will be represented by continuous functions in the new
model described in section VI.

The first support for the claim of the partially continuous
nature of Go comes from the fact that the number of legal
board positions on a19×19 board which according to [1], [2]
is about0.011957528698× 3361 ≈ 2.081681994× 10170, and
by far exceeds the number of possible different scores (722 =
2 × 192 for integer komi as well as for half-integer komi).
Therefore many different positions must have the same score
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even if one is 50 or 100 moves into
the game. Although this statement
theoretically still allows for the
case that just one move gives the
optimal result and all other remain-
ing legal moves give a lower final
score, this is extremely unlikely in
calm positions earlier in the game.
(Of course if one side plays a large
threat then there is often just one
possible reply.)
An example supporting the claim
of partial continuity is shown in
Diagram 1 which is taken from [3].
It shows points A-F as possible
places for� to move next. Al-
though they will lead to different
games, their game-theoretic values
are very close if not equal.

The second example shows how Go is a game of trade and
not simply one of finding a ”killer”/magical move which inex-
plicably does the job. The possibility to trade approximately
equal values (of possibly different qualities, like area against



safety) demonstrates the continuous side of Go too. Naturally,
the possibility for exchanges of continuously-valued entities
is higher at earlier stages of the game, when the board is still
mostly empty, as in the above example. Diagram 2 shows an
example from the early middle game: the position after move
49 in a professional game between Yun Seong-hyeon (�) and
An Yeong-kil (�) played on3rd Jan 2001. The task for�
is to strengthen his weak group marked�.

The need for� to act, and offer or enforce a trade, comes
from the fact that a group can survive permanently only if it
surrounds at least two separated empty points on the board,
i.e. there is a threshold for the minimum size and extension
of a group of stones to be stable. But in Diagram 2 the stones

� currently do not have that needed control on empty points.
Neighboring assets that� still has at his disposal for trading
are some potential on the lower edge and some minor potential
on the� dominated right edge. An idea for an exchange could
be to offer� total control of the right edge, and increased
influence on the bottom edge, in exchange for more influence
and strength of the� stones in the center. In the appendix
we discuss in more detail how a� attack on the stone at A,
and a sacrifice on B can achieve that. Although two moves
(A and B) are shown in Diagram 2, often many variations are
possible, but sometimes only one move is able to initiate a
(pseudo steady) shift of potential.
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B. Discrete Aspects of Go

That board games live in a discrete domain of trees of
alternating moves is obvious. A different type of a stronger
discreteness / branching is shown in Diagram 3. This is the
position after move 48 (� ), in a game between two high
level amateur players. For comments on this position please
see the appendix.

� moving next in Diagram 3 can attack at A or B, and
either get the corner, or give the corner to� but weaken
the� stones with strategic consequences. Although the two

alternative moves on A and B are spatially close, the resulting
trade has a lasting effect on a more extended area and is non-
reversible. More details are given in the appendix.
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C. Unbounded Amplification

Continuous processes with discrete outcomes, like all real
life games (hockey, soccer, rolling dice, roulette,..) or real
life decision processes, are of interest as they show on oc-
casion an arbitrarily large amplification of minor differences
in continuous input data to result in a discrete outcome. These
are often dramatic events, for example, when a football just
touches a goalkeeper, then hits the post, and scores or does
not score. Such branchings are not restricted to games. The
outcome of these processes is a discrete results which often has
much impact, and can not be reversed. Therefore the decision
process has, if necessary, to be flexible enough to provide large
resources for trying to predict the outcome.

In professional Go it is often the case that a game is won
only by a small margin, sometimes by the smallest possible
margin of 1/2 point (half integer outcomes resulting from half
integerkomi). Thus, when a decision such as that in Diagram
3 has to be made, it is crucial that it be a well-informed
choice. In this case the value of the lower right corner can
be determined exactly, but the point-value of the weak, but
extended,� group on the lower edge is tied to the rest of
the board and can only be estimated. For computers correct
estimation still implies large simulations.

In a game like Chess one would do a quiescence search, i.e.
one would search locally deeper in the search tree, as long as
the situation is not quiet – e.g. as long as stones can still be
captured in the next move, etc . . . , whereas in Go this is not
feasible. In Go, searches are either always done to the end of
the game (Monte Carlo search), or are done mostly too flat
(mini-max search) with many local threats being able to push
the real issue of a fight out of the horizon of visibility for the
search (even if one might be able to design counter measures
for clear cut cases).



III. R ELATIONS ON DIFFERENTSCALES

When designing a solution process, and determining the
data structures that are to be used, one wants to minimize the
number of variables and one wants to minimize the number
of dependencies between these variables to increase effective
speed, i.e. to compute deeper and achieve a higher playing
strength.

To minimize the number of dependencies one needs algo-
rithms to be as local as possible, for example to investigate
only relevant followup moves which are in some sense ‘local’
to the previous move.

In the next short sub-sections we give evidence how re-
lations between variables that describe the situation in a Go
game can be of different nature and involve information that
is available locally or only globally. We start with the most
simple and preferred type of relations which we call local and
extend to ultra local, regional and global as need arises.

A. Local Relations

The most obvious interactions in Go are purely local - the
interactions between neighbouringchains, and their shared
liberties.

The capture rule in Go states:A chain of stones (of one
colour) is captured (and by that all its stones are taken off the
board) when the opponent occupies all adjacent points(see
appendix). Even if not captured, chains are considered dead at
the end of the game if the opponent can show that a capture
can be enforced. Thus, all that matters for this essential rule
of Go is the immediate neighbourhood of chains.

For a local model based on this observation the elementary
objects (calledunits in the remainder of this paper) would
consist of all chains and allpoints(empty intersections on the
board). All that would be stored for a unit would be

• its name (for a point its coordinates and for a chain its
index),

• a list of neighbouring units (points and chain indices),
• some data describing the state of this unit, for example, a

strength value for a chain (e.g. the probability of survival)
and for a point the influence value (e.g. the probability
of becoming owned by� or� at the end of the game),
but

• not the shape of the chain.

Although chains can become as large as the board, we still
call this modellocal because it is only the immediate neigh-
bourhood on which the state of each unit depends. To give an
example,semeaifights (races to capture), for example between

� and� on the right edge of Diagram 4, could be solved by
such models, as could any other local fights which end when
one chain is captured, for example, when chains get so big
that their survival is essential.

Another type of tactical question that is in the range of local
models is how far one side can invade enemy territory with
the next move, so questions that can be answered based on

influence.
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B. Ultra local Relations

If a chain is captured then on the arising empty space many
points (i.e. units) appear and start to interact – suddenly it
matters what the shape of the captured chain was. For example,
when the throw-in chains� and� at the top of Diagram 4
are captured (as at the top of Diagram 5) then the shape of the

� chain implies that the capturing chain will be dead whereas
the chain capturing� will be alive. (� can always play at R
or S and live.) When chains can not be represented by a few
numbers as in the local model but if their shape matters then
we call thisultra-locality.

The question arises: Why should one consider locality if,
to be precise in computations, eventually one would have to
consider ultra-local data and relations anyway? The answer



is: The neighbourhood of a chain does not hold enough infor-
mation and the shape/interior of a chain becomes interesting
only if the chain gets captured and if in addition the chain
had more than 3 stones and also not too many stones because
the capturing chains would otherwise live independently of the
shape of the captured chain.

Thus, working by default in a local model, and going ultra-
local only when necessary (e.g. when evaluating eyes), reduces
complexity compared with working ultra-locally throughout.

C. Group (regional) Relations

Apart from ultra-locality, could a sufficiently sophisticated
local model be rich enough to derive all Go knowledge and
play almost perfectly, given enough computing power?

How about positions where a move has a long-distance
effect? For example, the sequence of moves starting with�� in
Diagram 5 could finally catch the chain� in Diagram 4 if the
stonel in Diagram 4 were not present. Although it would be
difficult for a local model to realize the crucial role ofl this
is not a good counter example for locality in Go. For example,
in physics waves can propagate long distances and fields can
be far ranging and still be described purely by local relations
(differential equations instead of integral equations).

An example for a concept in Go that cannot be described
locally in the above sense is the concept ofindependent life
which is defined recursively:A chain is alive if it participates
in at least two living eyes and an eye is alive if it is surrounded
only by living chains.

Thus, life is not necessarily the property of a single chain
but of a whole set of chains which are all alive, or all dead.
An (artificial) example is shown in the upper left corner of
Diagram 4. The life of� depends solely on who plays next
at M. If this is� as in Diagram 5 then all� are dead.

It is important to realize, that the property of life of a
whole group of chains has to be verified at once, and can
not be decided in an iterative local process based on a local
dynamical model, starting with some initial values for the state
variables and then trying to recognize exact life through an
iteration process. The crucial point is the recursive nature of
the definition of life.

The range of this non-locality would be the range of all
neighbouring chains whose life status is yet undecided, and
which are dependent on each other somehow. The typical size
of such undecided areas would typically be much less than the
whole board, so one could call relations between the units of
such a group of chains regional or group-wide, but not global.

D. Global Relations

Are there further causal relations between parts of the board
which are not local, or group-wide? The answer is yes. The
stronger a player is, the more wide-ranging are the effects that
(s)he consider. But, even for weaker players some positions are
of a truly global nature, likeko situations. When a ko threat is
played, areas which are settled may become unsettled if a ko
threat is not answered, and thus one side plays two times in a
row in that area. This is illustrated in the following example.

For � to live in the lower right corner of Diagram 4 at
first A has to be captured as in Diagram 5 byb and then

� has to put a stone onto the position of the formerA. �
instead wants to re-captureb but is not allowed to do this
instantly due to theko-rule (to avoid loops, see appendix).
Before continuing with the example it should be noted that the
semeai on the right side is settled. Even if� would move first,
he would still be behind one move and would get captured.
But with an on-going ko White playsC in Diagram 5 and
challenges� either

• to answer withd and to stay ahead in the semeai but
allow � to captureb, or

• to link b to the other black stones in the corner and live
there but to loose the semeai race because� will move
the 2nd time in a row in the semeai and thus be ahead.

IV. SUMMARY ON CONTINUITY AND LOCALITY

The consequence of the above considerations is that there
can not be Go programs that are elegant/compact and efficient
at the same time. To be efficient the programs have to take
advantage of relations being local when that is the case but that
requires much Go specific domain knowledge. For example,
pure Monte Carlo type programs are compact but not as
efficient as programs could be because they know almost
nothing about local or group-wide relations. The procedures
described in section VI are efficient and compact, but they
have to be extended by life-and-death knowledge, by more
knowledge about local stability dependencies, and by global
search. Thus to become a strong full-game playing program,
such a program would definitely no longer remain compact.

The essence is that Go positions are complex hierarchical
systems without a mathematical, or compact algorithmic,
solution.

The example in Diagram 2 supports this conclusion. When
thinking on a large scale, the possibility of planning to
exchange areas, allows one to cut down the number of moves
that need to be examined in detail. This simplifies the problem
for humans. But, in Go, what is relatively easy for humans
(planning, being creative to move the solution process partially
into a more abstract domain) is hard for computers.

The situation is different in other games. For example, the
game of Chess is essentially purely global because queens,
rooks and bishops can move over the whole board in one move
and pawns can be promoted, and turn into any piece. Thus,
the different parts of the Chess board are much more causally
linked. Imagine how difficult a Chess game on a 19x19 board
would be, with about 30 pieces being able to move over the
whole large board in just one move! Also, Chess is completely
discrete in its nature. To be clear, the issue of complexity
should not be mistaken for difficulty. Both games – Chess
and Go – are too difficult to be solved by computers and
are therefore in some sense ‘equally difficult’ but Go shows
properties of complex systems which most other well-known
games do not have.



V. D IFFERENT SOLUTION PARADIGMS

In the following subsections we look at the pros and cons
of different approaches to computer Go.

A. Offline versus Online Computations

One way to characterize each method is its ratio of computer
time spent before the game to that spent during the game –
offline versus online. Computational tasks are

1) suitable for online computations, i.e. computations dur-
ing the game, if the computational tasks

• are relatively quick to perform, and
• hardly ever occur in that form twice, i.e. the prob-

lems are too numerous to store, and are

2) suitable for offline computations if they

• are non-computable, or very hard to compute, and
• occur relatively frequently, i.e. the problems are not

too numerous to store.

The essence of this statement is that any method which
concentrates on only one side of this duality is seriously
handicapped. For example, it is impossible to pre-evaluate all
positions which can come up after 50 moves and it is impossi-
ble to compose all pattern of size, say,16×16 which may very
well be the extension in one direction of a weak group that
fights for life. It also is not possible to reduce the essence of a
position with, say, 50 stones to manageable amounts of ideas,
patterns, and concepts ... that can be pre-computed and stored.
A position can change its nature completely by displacing a
single stone by one point, with the consequence that a ladder
now does not work,... . As a consequence online computation
can only partly be compensated by offline learning. One
could argue that professional human players can not do large
computations online (i.e. not do a tree-search with 1000s of
nodes per second), i.e. that the offline/online ratio is very large
for them. Although this is true, current AI is very far away
from implementing a human professional Go player. With the
rise of Monte Carlo programs the trend was rather in the other
direction of a low ratio offline/online.

B. Knowledge based programs

As remarked above in section III-A, relations between
chains are often purely local. Naturally, it would be an inappro-
priate waste of search effort to solve a local problem (semeai,
local invasion) by a wide search and thus exponentially less
effective than through a narrow search. But pruning search
requires knowledge.

Knowledge based programs were the more successful ones
in the first three decades of computer Go. Their advantage is
to solve specialized problems (opening moves, local life and
death fights, creating patterns of effective shapes, . . . ) at a
strong amateur Dan (master) level. But they have disadvan-
tages:

• For knowledge to be of increasing quality not only does
the effort of acquiring and maintaining the knowledge
increase, the domain of applicability also shrinks. In other
words, situations on the board need to be specific to have

efficient and exact algorithms and procedures describing
them accurately. Thus the cost-benefit balance gets worse
the higher the quality of the knowledge is.

• Information coming from different knowledge bases,
solving different sub-problems, and describing different
issues, has to be merged to reach a single decision:
”what is the best next move”. The quality of merged
knowledge is typically at a much lower level than the
specialized high level knowledge itself. Thus, knowledge-
driven programs are good if the whole problem reduces
to the solution of a tactical sub-problem for which a
specialized module exists, but not if dual purposes have
to be pursued simultaneously at a high level.

• The more involved the software for the knowledge base
gets (several data bases, either partially hand crafted
(pattern), or automatically generated (opening, inter-
mediate results of local tree-searches), pre-generated
eye-database,..), 100’s of tactical modules written over
decades by one person or a team - the harder it gets for
someone new to penetrate such a package, and to continue
developing it.

• Knowledge-based programs do not scale – i.e. they can
not easily, or even at all, convert computing power into
strength.

C. Learning through statistics from professional games

By collecting statistics on patterns occurring in professional
games, and then nesting these patterns, and organizing them
in a database, it is possible to achieve relatively high (in the
50% range) prediction rates for moves in professional games
(see [4] and other papers by Stern et al). The problem with
such approaches is that the programs have no understanding
of the situation so they occasionally make moves which, in a
crucial situation, are totally wrong and thus ruin a game.

D. Monte-Carlo programs

Based on an early concept for Monte-Carlo (MC) simu-
lations applied to Go [5], this approach started to dominate
computer Go in recent years when combined with the UCT
algorithm [6], [7], which is a tree search method based on
Upper Confidence Bounds (UCB). This type of approach (see
e.g. [8]) produced new programs – [9], [10], [11] – that are
stronger than the previous best programs, by an equivalent of
5-6 handicap stones. For the first time it was possible to beat
high dan professional players (at least in the first game) when
starting with 7 handicap stones ([12]).

This strength increase was made possible by abandoning
initial knowledge completely, avoiding the derivation of spe-
cial domain knowledge, and thus saving the effort of merging
knowledge from different sources. Instead they performed a
progressively selective tree-search, based on success rates of
moves learned during the search. The UCT formula provides
a compromise between exploring new moves and replaying
successful moves and exploring their consequences. Although
starting out only with random move sequences, and performing
thousands to millions of simulation games, just to find the



next move, this method can convert, at least to some extent,
computing power into playing strength, and thus is able,
for example, to utilize large parallel computer clusters. The
following are the principal problems of this approach:

• If professional games are played to the end then the
result is typically in the 5-point range. With a game
taking on average 250 moves this means that one side
was on average only150 of a point per move better than
the other side. As a Go player it is hard to imagine1

50
of a point! It would be very expensive to derive such
tiny relative advantages of one move against another
move purely from a statistical approach. Instead, using
knowledge and logic it is often possible to make a
statement about the relative value of moves without doing
any computations by just recognizing minor differences
between otherwise equivalent moves. One could argue
that one could program that knowledge and add such
routines to MC tree search but then one is back to all
the problems of knowledge based programs, especially
losing scalability gradually, as more knowledge is added.

• The larger the board is, and the earlier it is in the game,
the longer are the simulation games performed in the tree-
search phase, and the less accurate are the results.

• Even if MC based programs should improve considerably
in coming decades, it will still be highly unsatisfactory
if, just to beat young kids, we require large computer
clusters, each needing their own power station for the
energy to run and cool them.

VI. EXPERIMENTS WITH A LOCAL MODEL

Following the outline of section III-A a computer program
was written that takes as state variables the Black/White
influence value at each (empty) point and the probability for
survival of each chain. All values are represented by real
floating point numbers in the interval0 . . . 1. A dynamical
system of relations is formulated by expressing each variable
in terms of these variables from neighbouring units. Then
values are initialized and the system is solved numerically.

In using the probability valuesb, w for one point to be
occupied by�, � and the probability values̄b, w̄ that
at the end of the game at least one neighbouring point is
occupied by� , � we computeb, w from the simple system
b + w = 1, bw̄ = wb̄ (after expressinḡb, w̄ in terms ofb, w
of neighbouring units). The second formula is of course only
a simple ansatz but at least it is correct for extremal values 0
and 1 of b̄ and w̄.

For chains we define the computed value of strength as
1 minus the probability to be captured, i.e. all neighbouring
points to be occupied by the opponent using the values
associated with the neighbouring units. If one drops one liberty
of the chain in this computation (the liberty that is least
accessible by the opponent and thus to implement the fact
that a capturing move is always legal (apart from ko)) then
the resulting algorithm is able to recognize life based on two
1-point eyes. But already if 2-point eyes are involved the
algorithm will not be able to recognize unconditional life.

An incremental version of this algorithm has been imple-
mented such that initial values of 0.5 for points and 1.0 for
chains are given only once at the very beginning when the
first position is evaluated (in a game the empty board or the
board just with handicap stones).

To check the correctness of numerical computations the
resulting polynomial system for the unknowns (black/white
influences at points and strength values of chains) was solved
analytically with all its complex solutions for small positions.
In general, there was only one real solution with values in
the interval0 . . . 1. The only observed case where the solution
of the dynamical system did depend on the initial numerical
values was the case when two chains of opposite color were
attached to each other and both had only one liberty. This
situation is obviously very unstable, whoever moves next
captures the other’s chain. For such ’hot’ situations a static
analysis is of only little value.

The positive aspects of this algorithm are its simplicity,
robustness, speed, global nature, and the lack of any artificial
(and thus strictly speaking wrong) parameters. The algorithm’s
weakness in not recognizing static life or death is shared by
all local iterative algorithms, as summarized in section IV
and should therefore not be held against it. A more complete
description of results is beyond the scope of this paper, and
will be published elsewhere.

We can sum the probability-of-ownership for all points,
and then, for each chain, calculate the survival probability,
weighted by size. These can be added to get a simple estimated
score. By performing all legal moves, and selecting the one
with the highest score, the module can even play games.
Because the program in its pure form does not know about
life and death, it has hardly any chance in normal games.
A more instructive test is to perform a ranking of all legal
moves in the 10.4 million positions of the 50,000 professional
games in the GoGoD collection [13] and to record where in
this ranking the next move in the games appears. The large
number of games allows one to calculate statistics for each
move number. Figure 1 shows such a statistic for move number
100 (a typically difficult phase for the influence function) in all
games. A point on the graph with coordinatesx (horizontally)
andy (vertically) means that iny% of the games in the position
after move 100 the next move in the game is ranked in the
rangex . . . (x + 1)% of all legal moves in that position.

Practically all related diagrams in other computer Go pub-
lications show only the ‘optimistic’ right end of the diagram,
not the ‘pessimistic’ left end. However, the characteristics of
playing strength is not only to have a high rising graph near the
99% mark, but more importantly to have virtually no games
where the professional move scores low. This shows that the
local module that we studied still has a long way to go to
become a strong static evaluation function.

VII. SUMMARY

In this paper reasons are given why board positions in the
game of Go show properties of complex systems. A new
model, and an algorithm, for computing a static influence
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Fig. 1. A statistic of the ranking of the next professional move after move
100 in 50,000 professional games

function is described and its strengths and weaknesses are
discussed.

APPENDIX ONGO TERMINOLOGY

To make this paper readable to non go players a
few go specific terms are explained in this appendix.
Some formulations are borrowed from Sensei’s Library
(http://senseis.xmp.net/ ) where more details in-
cluding an introduction to go can be found.

A go board consists of a square grid of19 × 19 lines
(exceptionally 9 × 9, 13 × 13), The two players have an
unlimited number of, respectively, white and black stones and
alternate in putting one of their stones onto an unoccupied
intersection of two lines. An intersection of lines on the go
board will be calledpoint if it is empty andstone if it is
occupied. Stones of one color attached to each other will be
called achain. A point (that is empty by the above convention,
and) that is a neighbour to a chain, is called aliberty of that
chain. Thecapture ruleof go requires that each chain has at
least one liberty and if the last liberty becomes occupied by an
opponent’s stone, then the chain is captured and taken off the
board. The captured stones are prisoners and count one point
each after their automatic capture at the end of the game.

The aim of the game is to surround territory and to capture
stones (1 captured stone is worth as much as one point of
territory). The advantage to� of moving first is usually
compensated by� getting a number ofkomi (compensation
points) which are in the range 5-7 and can be integer or half-
integer valued (to avoid a draw – calledjigo in Go).

We introduce the termunit to stand for either a chain or a
point (i.e. an empty intersection of lines on the board).

The word field will be used for a numerical value being
attached to each unit like a strength field attaching a numerical
strength to each point and each chain on the board. To avoid
confusion with points we will call thisnumerical field and
otherwise avoid the word field.

An eyedenotes points and stones surrounded by chains of
one color.

In go the rule which forbids infinite loops of repeating
sequences is called theko rule and the situation to which
it applies is calledko.

A player who hassentecan decide where to play next. Not
to have sente is often to be constrained into a direct answer
to your opponent’s previous play. The converse of this state
of affairs is calledgote.

Sekimeans mutual, or shared, life, and involves at least one
chain of each colour. In its simple form, it is a sort of standoff
where two live groups share liberties which neither of them
can fill without being captured.

Josekiare generally agreed-upon sequences of play, mainly
in empty corners, resulting in what is considered a fair
outcome for both players.

Semeai describes a race of two neighbouring chains of
opposite color trying to capture each other.

Moyo is a larger area, potentially owned by one side.
There are many playing levels in go. They are grouped

into kyu grades (the majority of amateur players starting from
about35th kyu to1st kyu), dan grades (strong amateur players
from 1st dan to7th dan) and professional dan grades (from1st

to 9th professional dan). The difference between two amateur
levels corresponds to the number of stones the weaker player
is allowed to have already on the board at the start of the
game, to have a 50% winning chance.

APPENDIX TOSECTION II-A

This appendix refers to Diagram 2, and looks in more detail
into the options for� ’s next move.

8
7 �
6 �� �� �
5 �� A �����
4 È ���������
3 ������� �
2 ���� ��
1

k l m n o p q r s t
Diagram 6. � to move
after� plays elsewhere.

If � should play an ordi-
nary move elsewhere (not
shown in Dia. 6), then�’s
threat is an even harsher
attack on the white group.

� cannot even play the
good shape connection��
because then� could cut
at �� and threaten A, which
will capture 4 stones. So�
would have to play �� at A,
making very bad shape for
his running group.

8
7 �
6 �� �� �
5 �� 
� �����
4 È ���������
3 ������� �
2 ���� ��
1

k l m n o p q r s t
Diagram 7. � to move.

Since �’s center group,
which is an important cut-
ting group, is in danger
of being attacked severely,
normally � would defend
it immediately, and directly,
with a sequence such as
in Dia. 7. However, the
group would nevertheless
remain heavy and under at-
tack, while � could only
profit from attacking.
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11 
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10 È �� ��

9 �� ��
8
7 �
6 ��� �
5 �� ���
4 È ����������
3 ������� �
2 ���� ��
1

k l m n o p q r s t
Diagram 8. � to move.
A � counter attack

�� is the game’s move. It is
a flexible counter-attack that
wants to either a) help his
weak group by leaning on
the single black stone with a
sequence like 1 to 6, and in-
stalling a foothold towards
which the group can later
move after starting with 7
to 11, or b) (as it happened
in the real game) to get an
exchange starting from the
game moves �� on p5, 
�
on r11, �� on r12, where�
sacrifices his center group
(at least part of it temporar-
ily) and gets as compen-

sation the reduction of� ’s right sidemoyo.

Conclusion (for a Go player):
When answering the opponent’s local threat (here: to attack

� ’s center group more severely), if it is not favourable for a
player, then he might counter by playing a threat of his own
elsewhere (attack on� ’s single stone) if that also indirectly
threatens to minimize the opponent’s threat.

APPENDIX TOSECTION II-B

This appendix refers to Diagram 3 and looks in more detail
at the options for� moving next.

8
7 �
6
5 � �
4 È ��
3 � � � �
2 � ��
1

k l m n o p q r s t
Diagram 9. � to move.

The last move –� – threat-
ened to play �� in Dia-
gram 9 next. This would
take away all the lower right
corner territory of�; take
away much of his eye-space;
give � territory in the cor-
ner, and provide secure eye-
space for the lower middle
white group. Therefore ��
would be very big.� is a

so-called probing move, i.e., a move that the opponent�
must answer immediately but where he has more than one
possible answer to choose from.

8
7 �
6
5 � �
4 È ��
3 � � � �
2 ��� �� ��
1

k l m n o p q r s t
Diagram 10. � to move.

Diagram 10 shows the game
sequence. �� is one of the
two possible black answers
to �. The sequence�� to
�� is a middle game joseki.

� secures his corner while

� reduces the black corner
territory in sente, and pro-
vides his lower middle group
with enough eye-space for
two eyes. During the rest of

the game, it is inconceivable that� would get another chance
to sacrifice the lower right corner, to attack the white group

driving it into the center, or to kill the white group (unless

� should later decide to sacrifice it).

8
7 �
6
5 � �
4 È �� ��
3 � � ��� � ��
2 ��� �� ��
1

k l m n o p q r s t
Diagram 11. � to move.

�� in Diagram 11 is the
other possible reply to�.
The sequence 1 to 6 is an-
other middle game joseki.

� makes small life in the
lower right corner ingote. In
exchange,� gets a strong
cutting group in sente, and
will be able to use it to attack

� ’s lower middle group, or
even launch a double or multiple attack also against� ’s
right side or upper middle groups (see Diagram 3). During
the remaining part of the game,� cannot get back his lower
right corner territory and take away� ’s territory there
(unless� should later decide to sacrifice it).

Conclusion:
At move 49, � is faced with an irreversible decision

between just two reasonable moves.�� in Diagram 10 chooses
the corner territory and drops later easy attacks on the life
of �’s lower middle group. �� in Diagram 11 sacrifices the
corner territory to get an easy attack on the life of�’s lower
middle group.
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