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Abstract

We consider the construction of designs for the extrapolation of a regression response to one point outside of the design space.
The response function is an only approximately known function of a specified linear function. As well, we allow for variance
heterogeneity. We find minimax designs and corresponding optimal regression weights in the context of the following problems:
(P1) for nonlinear least squares estimation with homoscedasticity, determine a design to minimize the maximum value of the mean
squared extrapolation error (MSEE), with the maximum being evaluated over the possible departures from the response function;
(P2) for nonlinear least squares estimation with heteroscedasticity, determine a design to minimize the maximum value of MSEE,
with the maximum being evaluated over both types of departures; (P3) for nonlinear weighted least squares estimation, determine
both weights and a design to minimize the maximum MSEE; (P4) choose weights and design points to minimize the maximum
MSEE, subject to a side condition of unbiasedness. Solutions to (P1)–(P4) are given in complete generality. Numerical comparisons
indicate that our designs and weights perform well in combining robustness and efficiency. Applications to accelerated life testing
are highlighted.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this article, we study the construction of designs for the extrapolation of regression responses to one point outside
of the design space. Such “one-point extrapolation” designs are of interest in problems of accelerated life testing (ALT),
in which products are typically tested at unusual stress levels, with the results then extrapolated to a lower stress level
anticipated in practice. Our model is somewhat similar to a generalized linear model, in that the response fitted by the
experimenter is a function of a linear function of unknown parameters and known regressors. Our designs are robust
in that we allow both for imprecision in the specification of the response, and for possible heteroscedasticity.

Robust designs for extrapolation of a, possibly misspecified, linear response were obtained by Fang and Wiens
(1999); see also the references therein, in particular Dette and Wong (1996), Draper and Herzberg (1973), Huang
and Studden (1988), Huber (1975) and Spruill (1984). The current work goes beyond Fang and Wiens (1999) in two
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ways—in the move to a generalized linear response as described above, and in our emphasis on extrapolation to a single
point, thus allowing for more explicit and applicable results than were previously possible.

For nonlinear regression, Ford et al. (1989) present various static and sequential designs for nonlinear models without
the consideration of model uncertainty. Sinha and Wiens (2002) have employed notions of robustness in the construction
of sequential designs for the nonlinear model. In many ALT applications however, sequential designs are not feasible
(Ford et al., 1989), hence our focus in this article on static designs.

Fang and Wiens (1999) point out that “Extrapolation to regions outside of that in which observations are taken is, of
course, an inherently risky procedure and is made even more so by an over-reliance on stringent model assumptions.”
With this in mind, we shall depart rather broadly from the usual generalized linear response models:

1. The response is taken to be an approximately known function of a linear function of known regressors and unknown
parameters:

E(Y |x)= h(�T
0 z(x))+ n−1/2f (x)

for p regressors z(x)=(z1(x), z2(x), . . . , zp(x))T, depending on a q-dimensional vector x of independent variables.
The function h is strictly monotonic, with a bounded second derivative. We assume that ‖z(x)‖ is bounded on S.
The response contaminant f represents uncertainty about the exact nature of the regression response and is unknown
and arbitrary, subject to certain restrictions. We estimate � but not f; this leads to possibly biased extrapolations

Ŷ (x) = h(�̂
T

z(x)) of E(Y |x). The factor n−1/2 is necessary for a sensible asymptotic treatment. It ensures that
losses due to bias remain of the same asymptotic order as those due to variance, and is analogous to the requirement
of contiguity in the asymptotic theory of hypothesis testing. As in this analogous testing situation it has no effect
in finite samples, since the factor can be absorbed into the alternative, i.e. into f.

2. The experimenter takes n uncorrelated observations Yi = Y (xi ), with xi freely chosen from a design space S. Our
goal is to choose these design points from S in an optimal manner in order to extrapolate the estimates of E(Y |x)

to x0.
3. The observations Yi are possibly heteroscedastic, with VAR{Y (xi )}=�2g(xi ) for a function g satisfying conditions

given below.
We estimate � by least squares (LS), possibly weighted with weights w(x). Our loss function is n times the mean-

squared error of Ŷ (x0) in estimating E(Y |x0). This depends on the design measure �= n−1�n
i=1�xi

as well as on w, f
and g:

MSEE(f, g, w, �)= nE{[Ŷ (x0)− E(Y |x0)]2}.
We denote unweighted least squares by w = 1, and homogeneous variances by g = 1. The following problems will

be addressed:

(P1) For ordinary least squares (OLS) estimation under homoscedasticity, determine designs to minimize the maximum
value, over f, of MSEE(f, 1, 1, �).

(P2) For OLS estimation under possible heteroscedasticity, determine designs to minimize the maximum value, over
f and g, of MSEE(f, g, 1, �).

(P3) For weighted least squares (WLS) estimation, determine designs and weights to minimize the maximum value,
over f and g, of MSEE(f, g, w, �).

(P4) Choose weights and design points to minimize maxf,g MSEE(f, g, w, �), subject to a side condition of unbiased-
ness.

The overall message to be taken from this work is that the experimenter must be extremely wary of an over-reliance
on an assumed model from which to extrapolate predictions. The performance of a design which is optimal, in the
sense of minimizing variance at the assumed model, typically deteriorates rapidly as the assumed and true models
diverge, and as bias is included in the loss. Stark illustrations of this are given in Example 2 of Section 5, where we
compare the robust, classically optimal and naive uniform designs for straight line and quadratic regression. Further in
Section 7, we demonstrate that for minimization of variance alone the designs of Hoel and Levine (1964) are optimal,
and significantly better than their competitors if the extrapolation point is not far from the design space. When bias
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is included, however, the Hoel–Levine designs can perform very poorly, with an MSEE which is unbounded in the
presence of the types of contamination considered here.

The rest of this article is organized as follows. The designs for P1 are provided in Section 4. The designs and weights
which constitute solutions to problems P2 and P3 are given in Section 5. Those for P4 are given in Section 6. Some
mathematical preliminaries are detailed in Section 2. The maximization part of the design construction is provided in
Section 3. Comparisons of these designs are presented in Section 7. All proofs are in the Appendix.

2. Preliminaries and notation

We define the “target” parameter �0 to be that which produces the best agreement, in the L2-sense, between h(�Tz(x))

and E(Y |x):

�0 = arg min
�

{∫
S

[h(�Tz(x))− E(Y |x)]2 dx
}

.

We assume an open parameter space, so that with

fn(x)=√n[E(Y |x)− h(�T
0 z(x))]

and

z̃(x)= h′(�T
0 z(x))z(x)

we have
∫
S

z̃(x)fn(x) dx = 0. Where possible we drop the subscript on f.
We shall assume that fn = f is an unknown member of the class

F=
{
f

∣∣∣∣
∫

S

f 2 (x) dx��2
S <∞, |f (x0)|��T <∞,

∫
S

z̃(x)f (x) dx = 0
}

,

for positive constants �S , �T . Our theory makes no assumptions, and imposes no requirements, on the behaviour of
members of F off of S ∪ {x0}. One might then, without loss of generality, require that they be bounded, or continuous,
etc. in this complementary region.

The departure from homogeneity of variances is measured by g(x), which is assumed to be an unknown member of
the class

G=
{
g

∣∣∣∣
∫

S

g2 (x) dx��−1 :=
∫

S

dx <∞
}

. (1)

The condition in (1) is equivalent to defining �2 = supg{
∫
S

var2[�(x)]� dx}1/2.
To ensure the nonsingularity of a number of relevant matrices, we assume that the regressors and design space satisfy
(A) For each a �= 0, the set {x ∈ S : aTz̃(x)= 0} has Lebesgue measure zero.
We propose to estimate �0 using LS to fit E(Ŷ |x)= h(�T

0 z(x)) with nonnegative weights w(x).
We make use of the following matrices and vectors:

AS =
∫

S

z̃(x)z̃T(x) dx, AT = z̃(x0)z̃T(x0),

B=
∫

S

z̃(x)z̃T(x)w(x)�(dx), D=
∫

S

z̃(x)z̃T(x)w2(x)g(x)�(dx),

bf,S =
∫

S

z̃(x)f (x)w(x)�(dx), bf,T = z̃(x0)f (x0).

It follows from (A) that AS is nonsingular. The LS estimator of �0 is

�̂= arg min
n∑

i=1

[Yi − h(�Tz(x))]2w(xi )
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and satisfies
∑n

i=1�̇i (�̂)= 0 for

�̇i (�)= [Yi − h(�Tz(xi ))][h′(�Tz(xi ))]w(xi )z(xi ).

In addition, the Hessian 	̈(�) is given by

n∑
i=1


̈i (�)=
n∑

i=1

[Yi − h(�Tz(xi ))][h′′(�Tz(xi ))]w(xi )z(xi )zT(xi )−
n∑

i=1

[h(�Tz(xi ))]2w(xi )z(xi )zT(xi ).

The information matrix is

I(�0)= lim
n→∞E

(
−1

n
	̈(�0)

)
= B,

since

E

{
1

n

n∑
i=1

[Yi − h(�T
0 z(xi ))][h′′(�T

0 z(xi ))]w(xi )z(xi )zT(xi )

}

= n−1/2 · 1

n

n∑
i=1

f (xi )[h′′(�T
0 z(xi ))]w(xi )z(xi )zT(xi )

is O(n−1/2) by virtue of our assumptions on f, h and z.
By Taylor’s Theorem,

0=
n∑

i=1

�̇i (�̂)=
n∑

i=1

{�̇i (�0)+ �̈i (�̃)(�̂− �0)},

where �̃ lies between �̂ and �0. Then

√
n(�̂− �0)=

(
−1

n

n∑
i=1


̈i (�̃)

)−1 (
1√
n

n∑
i=1

�̇i (�0)

)
.

Note that n−1/2∑n
i=1�̇i (�0) is asymptotically normal, with asymptotic mean bf,S and covariance

COV

[
1√
n

n∑
i=1

�̇i (�0)

]
= 1

n

n∑
i=1

[h(�T
0 z(xi ))]2�2g(xi )z(xi )zT(xi )w

2(xi )= �2D.

As at (Seber and Wild, 2003, Section 12.2), it follows that the asymptotic distribution of
√

n(�̂− �0) is
√

n(�̂− �0) ∼ AN(B−1bf,S, �2B−1DB−1),

and then by the delta method,

√
n(h(�̂

T
z(x0))− h(�T

0 z(x0))) ∼ AN(z̃T(x0)B
−1bf,S, �2z̃T(x0)B

−1DB−1z̃(x0)).

The loss function MSEE splits into terms due to (squared) extrapolation bias (EB) and extrapolation variance (EV):

MSEE(f, g, w, �)= nE{[Ŷ (x0)− E(Y |x0)]2}
= nE

{
[h(�̂

T
z(x0))− h(�T

0 z(x0))− 1√
n
f (x0)]2

}
= EB(f, w, �)+ EV(g, w, �),

where the squared EB and EV are

EB(f, w, �)= {√nE[h(�̂
T

z(x0))− h(�T
0 z(x0))] − f (x0)}2
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and

EV(g, w, �)= nVAR(Ŷ (x0))= nVAR(h(�̂
T

z(x0))).

Asymptotically,

EB(f, w, �)= bT
f,SB−1AT B−1bf,S − 2bT

f,T B−1bf,S + f 2(x0), (2)

EV(g, w, �)= �2z̃T(x0)B−1DB−1z̃(x0)= �2trAT B−1DB−1. (3)

We have defined � to be a discrete measure, with atoms of size n−1 at the design points (possibly repeated). We now
adopt the viewpoint of approximate design theory and allow � to be any probability measure on S. One reason for this
is that as at Lemma 1 of Wiens (1992), the class F is so broad that only absolutely continuous measures � can have
finite maximum loss. Thus, let k(x) be the density of �, and define m(x) = k(x)w(x). Without loss of generality, we
assume that the mean weight is

∫
S

w(x)�(dx)= 1. Then m(x) is also a density on S which satisfies∫
S

m(x)

w(x)
dx = 1, (4)

and we have

B=
∫

S

z̃(x)z̃T(x)m(x) dx,

bf,S =
∫

S

z̃(x)f (x)m(x) dx.

Remark 1. The requirement of absolute continuity excludes exact, implementable designs, and so approximations are
necessary. We recall the statement in (Wiens, 1992 p. 355): “Our attitude is that an approximation to a design which is
robust against more realistic alternatives is preferable to an exact solution in a neighbourhood which is unrealistically
sparse.” Various methods for implementing designs with continuous measures are discussed in Heo et al. (2001) and
the references therein. As an example, a practical implementation for univariate x is to place the n design points at the
quantiles xi = �−1((i − 1)/(n− 1)).

There has been some recent research into contamination classes which are sufficiently broad as to encompass realistic
alternatives to fitted models, while admitting discrete optimal designs. Of note is the use of reproducing kernel Hilbert
spaces, as in Yue and Hickernell (1999). It appears, however, that the theoretical and computational difficulties of this
approach have so far limited its application to the few cases considered there. If the design space is finite, then exact
designs can be obtained which are robust against a discrete version of the class F—see Fang and Wiens (2000) for
examples.

From the definitions of B, bf,S and bf,T , we notice that EB(f, w, �) depends on (w, �) only through m and
EV(g, w, �) through m and w. Hence, we can optimize over m and w subject to (4) rather than over k and w. In
the next four sections we exhibit solutions to P1–P4.

3. Maximization over f ∈ F and g ∈ G

In this section, we exhibit the maxima of MSEE, for fixed functions m(x) and w(x). The minimizing m and w then
constitute the solutions to P1–P4. The maxima are obtained in a manner very similar to that used in Fang and Wiens
(1999), and so their derivations are omitted.

Define positive semidefinite matrices

K =
∫

S

z̃(x)z̃T(x)m2(x) dx,

G=K − BA−1
S B=

∫
S

[(m(x)I− BA−1
S )z̃(x)][(m(x)I− BA−1

S )z̃(x)]T dx,
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and constants rT ,S = �T /�S , reflecting the relative amounts of model response uncertainty in the extrapolation and
design space, and �= �2/�2

S , representing the relative importance of variance versus bias. In this notation, we have the
following theorem.

Theorem 1. The maximum squared EB is

sup
f∈F

EB(f, m)= �2
S(
√

�m + rT ,S)2,

where �m = z̃T(x0)B−1GB−1z̃(x0). The maximum is attained at

fm(x)=
{

�SzT(x){m(x)I− A−1
S B}a0, x ∈ S,

−�T , x = x0,

where a0 = B−1z̃(x0)/
√

�m.

Remark 2. Recall Remark 1 above. It is of some interest to determine the bias which might arise in a discretized
design. This bias is nonzero only for functions f placing mass at the design points and/or at x0, and is therefore bounded
for uniformly bounded f. For a discrete design with probabilities �i and regression weights wi at the design points xi

(i= 1, . . . , N) we calculate from (2) that the maximum squared EB, over the set of functions f with
∑N

i=1f
2(xi )= k2,

is

max‖f‖=k
EB= (�T + k‖MZ̃(Z̃TMZ̃)−1z̃(x0)‖)2, (5)

here we use the notation mi = �iwi , M= diag(m1, . . . , mN), Z̃= (z̃(x1) · · · z̃(xN))T. This maximum EB is attained at

(f (x1), . . . , f (xN))T def= f = cMZ̃(Z̃TMZ̃)−1z̃(x0), where c is chosen so that ‖f‖ = k, and the sign of c is opposite to
that of f (x0). In Example 2 of Section 5, we illustrate our discretization methods, and compare the resulting designs
with some common competitors, using as performance measures ‖MZ̃(Z̃TMZ̃)−1z̃(x0)‖, which is the only component
of (5) which depends on the design, and an analogous discretization of EV(g, w, �). We find there that the discretized
designs continue to enjoy favourable robustness properties with respect to bias, at a small cost in increased variance
relative to the variance-minimizing designs. We do not present the discrete versions of the designs in other examples,
since they tell much the same story as in Example 2.

We obtain Theorems 2 and 3 from Theorem 1. Theorem 2 gives the maximum MSEE under homoscedasticity while
Theorem 3 gives this quantity under heteroscedasticity.

Theorem 2. The maximum MSEE in problem P1 is

sup
f∈F

MSEE(f, 1, 1, m)= �2
S{(
√

�m + rT ,S)2 + �z̃T(x0)B−1z̃(x0)}, (6)

attained at fm.

Theorem 3. Define lm(x)=[z̃T(x)B−1z̃(x0)]2 and 
m=
∫
S
[lm(x)m2(x)]2/3 dx. Then the maximum MSEE in problems

P 2.P 4 is

sup
f∈F,g∈G

MSEE(f, g, w, m)= �2
S

{
(
√

�m + rT ,S)2 + ��−1/2
[∫

S

{w(x)lm(x)m(x)}2 dx
]1/2

}
,

attained at fm and

gm,w(x) ∝ w(x)lm(x)m(x).

The following theorem, whose proof is very similar to that of Theorem 2.(a) in Fang and Wiens (1999), gives the
minimax weights for fixed m(x).
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Table 1
Numerical values for Example 1 with S = [0, 1], �1 ∈ [0, 2], rT S = 1, and x0 = 1.17

� a1 a2 a3 a5 �LF
1

0.5 0.130 0.421 −0.578 0.736 2
1 0.344 0.000224 −0.778 1.28 2
2 0.173 0.000286 −0.885 1.20 2

Theorem 4. For fixed m(x) the weights minimizing supf∈F,g∈G MSEE(f, g, w, m) subject to (4) are given by

wm(x)= 
m[l2
m(x)m(x)]−1/3I [m(x) > 0].

Then minw{supf∈F,g∈G MSEE(f, g, w, m)} = �2
S {(
√

�m + rT ,S)2 + ��−1/2
3/2
m }.

4. Optimal designs with homoscedasticity: solution to P1

Problem P1 has become that of finding a density m∗(x) which minimizes (6). The solution is given by Theorem
5, which reduces the problem to a (2p + 1)-dimensional numerical problem. The generality of our solution to P1, as
well as those to P2 and P3, should be compared with the corresponding development in Fang and Wiens (1999). This
generality, and the relative simplicity of the solutions, is made possible by our use of a one-point extrapolation region.

Theorem 5. The density m∗(x) minimizing (6) for OLS estimation under homoscedasticity is of the form

m∗(x)=
[

zT(x)�

zT(x)�
+ �

(z̃T(x)�)2

]+
,

where (z)+ =max(z, 0). The p × 1 vectors �, �, and constant � satisfy
∫
S

m∗(x) dx = 1, and minimize (6).

Example 1. We consider an approximate accelerated failure model in survival analysis (Hosmer et al., 1998, p. 272).
It is a generalized simple linear regression with zT(x)= (1, x), �=�0+�1x, and h(�)=e�. By Theorem 5, the optimal
design density has the form:

m∗(x; �1)=
[
a1x + a2

a3x + a4
+ a5

e2�1x(a3x + a4)
2

]+
. (7)

Note that (7) is over-parameterized—if one of a1 − a4 is nonzero then we can assume that it is unity. The term e2�0

has been absorbed into a5, but m∗ still depends on �1. To address this issue we adopt a mixture of minimax and local
approaches. We start at some �1 = �(0)

1 . The corresponding optimal design density is m
(0)∗ (x). Then, we maximize (6)

with m = m
(0)∗ over an interval containing �(0)

1 to find the least favourable value of �1, say �(1)
1 . We iterate between

minimizing over designs and maximizing over �1 until attaining convergence, say to �LF
1 . Finally, we employ Theorem

5 to construct the “locally most robust” design density m∗(x; �LF
1 ).

To illustrate the approach, we consider the Class-H insulation data from Nelson (1990, Table 2.1). We transform the
temperature variable t used there to our stress variable x with domain of [0, 1] via the transformation

x = −1.876+ 1000/(t + 273.15)

0.283
.

The LS estimate for the nominal model is �̂1 = 0.946, with standard error 0.0486. A corresponding 99% confidence
interval for �1 is (0.814, 1.08). Taking the model misspecification into account, we considered a broader region �1 ∈
[0, 2]. We used the same extrapolation point x0=1.17 as Nelson (1990). We carried out the process described above for
several values of �, each time starting at �(0)

1 = 0.946. In each case we obtained �LF
1 = 2. See Table 1 for the numerical

values of the constants, and Fig. 1(a) for plots. As a comparison, Fig. 1(b) provides the plots of the locally optimal
design densities at �1 = 0.946. All plots use a4 = 1 and rT ,S = 1.



Author's personal copy

1346 D.P. Wiens, X. Xu / Journal of Statistical Planning and Inference 138 (2008) 1339–1357

d
e

n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

d
e

n
s
it
y

Fig. 1. Optimal minimax design densities m∗(x; �1) in Example 1 for x0 = 1.17: (a) locally most robust design densities for �1 = �LF
1 in [0, 2]; (b)

locally most robust design densities for �1 = �(0)
1 = 0.946. Each plot uses three values of � : �= 2 (solid line), �= 1 (dotted line), �= 0.5 (broken

line).

5. Optimal designs with heteroscedasticity

Our problems P2 and P3 have become the following:
(P2) Find a density m∗(x) which minimizes

�−2
S sup

f∈F,g∈G
MSEE(f, g, 1, m)= (

√
�m + rT ,S)2 + ��−1/2

[∫
S

{lm(x)m(x)}2 dx
]1/2

(8)

with �m and lm(x) as defined in Theorems 1 and 3, respectively. Then k∗(x)=m∗(x) is the optimal one-point extrapolation
design density for OLS estimation.

(P3) Find a density m∗(x) which minimizes

�−2
S sup

f∈F,g∈G
MSEE(f, g, wm, m)= (

√
�m + rT ,S)2 + ��−1/2

[∫
S

{lm(x)m2(x)}2/3 dx
]3/2

. (9)

Then the weights

w∗(x)= 
m∗{l2
m∗(x)m∗(x)}−1/3I [m∗(x) > 0] (10)

and the density

k∗(x)= 
−1
m∗ [lm∗(x)m2∗(x)]2/3, (11)

with 
m∗ defined in Theorem 3, are optimal for one-point extrapolation with WLS estimation.

5.1. Minimax designs for OLS: solution to P2

The solution to P2 is provided by Theorem 6 below.

Theorem 6. The density m∗(x) minimizing (8) for OLS estimation under heteroscedasticity is of the form

m∗(x)= [(z̃T(x)�)(z̃T(x)�)+ �]+/[(z̃T(x)�)2{1+ t (z̃T(x)�)2}]. (12)

The p × 1 nonzero vectors �, �, positive constant t , and constant � satisfy
∫
S

m∗(x) dx = 1, and minimize (8).
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Fig. 2. Optimal minimax design densities m∗(x) in Example 2 with p = 1: (a) x0 = 1.5; (b) x0 = 5. Each plot uses three values of � : �= 10 (solid
line), �= 1 (dotted line), �= 0.5 (broken line).

Table 2
Numerical values for Example 2 with p = 1

x0 � a1 a2 a3 a5 a6

1.5 0.25 3.78 0.853 5.96 −0.294 0.00116
0.5 6.59 1.51 7.83 −2.43 0.00253
1 14.06 3.18 11.23 −16.52 0.00320
10 294.38 55.93 30.15 −2758.06 0.00537
100 1247.25 223.60 39.53 −17826.34 0.00946

5 0.25 26.55 1.84 31.15 −34.92 0.000183
0.5 54.39 3.72 45.58 −213.28 0.000188
1 148.64 9.73 80.38 −525.93 0.000122
10 751.39 42.48 66.96 −15013.05 0.00124
100 2138.31 117.57 45.21 −32404.40 0.0150

Example 2. Consider an approximate polynomial regression model E(Y |x) ≈ �= zT(x)�0= �0+ �1x+· · ·+ �pxp,
where zT(x)= (1, x, . . . , xp) and the design space S = [−1, 1]. Applying Theorem 6 with p = 1 results in the form:

m∗(x)= [(a1x + a2)(a3x + a4)+ a5]+
(a3x + a4)

2 + a6(a3x + a4)
4 ,

where a6 > 0. Fig. 2 gives plots of the minimax extrapolation design densities for varying x0 and � with a4 = 1 when
rT ,S = 1. A smaller � (more emphasis on bias) results in the minimax design becoming more uniform, while a larger �
results in a design resembling that which minimizes variance alone. An extrapolation point x0 closer to one end of the
design space leads to more design points being placed on the corresponding side of the design space. As the distance
between x0 and S increases the design tends to become more symmetric. See Table 2 for some numerical values of the
constants.

When p = 2, the minimax optimal design density has the form:

m∗(x)= [(a0 + a1x + a2x
2)(b0 + b1x + b2x

2)+ c]+
(a0 + a1x + a2x2)2 + d(a0 + a1x + a2x2)4 ,

where d > 0. See Fig. 3 for plots of, and Table 3 for numerical values for, the minimax extrapolation design densities
for varying x0 > 1 and � with a0 = 1 when rT ,S = 1. We observe the same qualitative features as when p = 1.

We now compare discrete implementations �∗d of �∗ with two common competitors. Let �HL be the Hoel–Levine
design (Hoel and Levine, 1964) which was derived under the assumption of an exactly correct fitted model. When p=1,
the design points of �HL are x1 =−1 and x2 =+1 with masses �HL(−1)= (x0 − 1)/2x0 and �HL(1)= (x0 + 1)/2x0.
For p= 2, �HL has three design points: x1=−1, x2= 0, and x3=+1 with masses �HL(−1)= x0(x0− 1)/2(2x2

0 − 1),
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Fig. 3. Optimal minimax design densities m∗(x) in Example 2 for p = 2: (a) x0 = 1.5; (b) x0 = 5. Each plot uses three values of � : �= 10 (solid
line), �= 1 (dotted line), �= 0.25 (broken line).

Table 3
Numerical values for Example 2 with p = 2

x0 � b0 b1 b2 a1 a2 c d

1.5 0.25 0.668 −0.521 −2.37 −0.192 −2.44 −0.102 0.123
0.5 0.853 −0.644 −2.99 −0.127 −2.30 −0.200 0.280
1 1.23 −0.858 −4.10 −0.0710 −2.17 −0.396 0.627
10 8.20 −3.77 −24.49 0.0358 −1.92 −3.83 8.03
100 77.71 −30.61 −223.96 0.0628 −1.86 −37.47 86.13

5 0.25 0.829 −0.144 −2.54 −0.0323 −2.29 −0.116 0.232
0.5 1.12 −0.186 −3.40 −0.0191 −2.19 −0.237 0.472
1 1.69 −0.255 −5.01 −0.0079 −2.11 −0.482 0.949
10 11.68 −1.20 −31.87 0.0147 −1.92 −4.89 9.64
100 111.06 −10.02 −296.67 0.0204 −1.88 −48.76 97.34
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Fig. 4. Support points of the discretized designs �∗d.
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Table 4
Comparative values of b and v for three discrete designs: �∗d, �Ud, and �HL

� b v

p = 1 p = 2 p = 1 p = 2

�∗d �Ud �HL �∗d �Ud �HL �∗d �Ud �HL �∗d �Ud �HL

1 n= 5 0.909 1.049 1.275 2.086 2.145 2.284 7.179 10.224 4.531 32.025 41.45 22.891
n= 10 0.660 0.808 1.275 1.448 1.814 2.284 7.237 11.648 4.531 32.307 56.930 20.781
n= 20 0.477 0.596 1.275 1.054 1.414 2.284 7.441 12.417 4.510 33.609 66.885 .20.061

10 n= 5 0.813 1.049 1.275 1.947 2.145 2.284 5.897 10.224 4.531 27.048 41.45 22.891
n= 10 0.592 0.808 1.275 1.450 1.814 2.284 6.024 11.648 4.531 29.070 56.930 20.781
n= 20 0.421 0.596 1.275 1.000 1.414 2.284 6.079 12.417 4.510 29.686 66.885 20.061

�HL(0)= (x0+ 1)(x0− 1)/(2x2
0 − 1) and �HL(1)= x0(x0+ 1)/2(2x2

0 − 1). The frequencies n�HL(·) are then rounded
to the nearest integer. Let �Ud be the discrete uniform design on [−1, 1] with mass n−1 at each of the design points
−1 + 2(i − 1)/(n − 1) for i = 1, . . . , n. Our design �∗d places mass n−1 at each of �−1∗ ((i − 1)/(n − 1)). We use
x0 = 1.5 and �= 1, 10 in the construction. For n= 5, 10, 20, the support points of �∗d are shown in Fig. 4. In Table 4
we give some comparative values of

b = ‖MZ(ZTMZ)−1z(x0)‖,
v = zT(x0)(ZTMZ)−1ZTDgMZ(ZTMZ)−1z(x0),

where M is the diagonal matrix of design masses, Z has rows zT(xi) and Dg is the diagonal matrix with diagonal
elements g(xi). Recall from Remark 2 that b is the component of the maximum, discretized EB which depends on the
design; similarly, apart from the factor �2, v is the discretization of EV, from (3). We have rather arbitrarily chosen to
evaluate v at g(x)= 1+ x2. As one might expect, our design �∗d “wins” with respect to bias, while �HL does so with
respect to variance.

5.2. Minimax designs for WLS: solution to P3

The solution to P3 is provided by Theorem 7 below.

Theorem 7. The minimizing m∗(x) in (9) for WLS estimation is of the form

m∗(x)= [B(x)− d(x)]+/A2(x), (13)

where

A(x)= z̃T(x)�, B(x)= A(x)(z̃T(x)�)+ �,

and where d satisfies the cubic equation

d3 + tA2(x)d − tA2(x)B(x)= 0.

Explicitly,

d(x)=
(

t

2
A2(x)

)1/3

[{B(x)+√C(x)}1/3 + {B(x)−√C(x)}1/3],

with

C(x)= B2(x)+ 4t

27
A2(x).

The p × 1 nonzero vectors �, �, and constants � and t > 0 satisfy
∫
S

m∗(x) dx = 1, and minimize (9). Then (10) and
(11) provide the optimal one-point extrapolation design weights and design density for WLS estimation, respectively.



Author's personal copy

1350 D.P. Wiens, X. Xu / Journal of Statistical Planning and Inference 138 (2008) 1339–1357

Table 5
Numerical values for Example 3 with p = 1, rT ,S = 1, S = [−1, 1]
x0 � a1 a2 a3 t �

1.5 0.25 0.287 0.0136 0.388 0.0177 0.675
0.5 −0.0118 0.00215 −0.0124 0.000161 0.541
1 −0.255 1.70 −0.966 68.73 2.00
10 8.69 8.78 53.96 8625.44 0.000230
100 16.09 149.83 1023.40 47926350 −0.139

5 0.25 40.37 0.634 24.34 0.280 0.000618
0.5 34.69 0.670 21.03 0.227 −0.00118
1 18.99 1.30 21.97 31.95 −0.000154
10 1.47 6.51 1.46 108419.4 −0.00368
100 1.07 7.04 1.04 68740870 −0.367
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Fig. 5. Optimal extrapolation design densities for WLS and simple linear regression (Example 3): (a) x0= 1.5; (b) x0= 5. Each plot uses two values
of � : �= 10 (solid line), �= 0.5 (dotted line).

Example 3. Consider an approximate polynomial model as in Example 2. By Theorem 7, the optimal minimax
m∗(x)= k∗(x)w∗(x) for WLS has the form (13) with

A(x)=
p∑

i=0

�ix
i , B(x)= A(x)

p∑
i=0

�ix
i + �.

The minimax design �∗ has density k∗(x) computed from (11). The minimax weights w∗(x) are obtained from (10).
Assuming a nonzero intercept we can without loss of generality take �0 = 1.

For p=1 we have A(x)=1+a1x and B(x)=A(x)(a2+a3x)+�. See Table 5 for numerical values of the constants.
Fig. 5 gives plots of the minimax extrapolation design densities for S= [−1, 1] and varying x0 > 1. For p= 2 we have
A(x)=1+a1x+a2x

2 and B(x)=A(x)(a3+a4x+a5x
2)+�. See Table 6 for some numerical values of the constants,

and Fig. 6 for plots.

6. Optimal unbiased designs: solution to P4

We say that a design/weights pair (�, w) is unbiased if it satisfies EB(f, w, �) = f 2(x0) for all f ∈ F, so that
supf∈FEB(f, w, �) = �2

T . The following theorem, which is essentially Theorem 2.2(b) of Fang and Wiens (1999),
gives a necessary and sufficient condition for unbiasedness.

Theorem 8. The pair (w, �) is unbiased if and only if m(x) ≡ �= 1/
∫
S

dx.
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Table 6
Numerical values for Example 3 with p = 2, rT ,S = 1, S = [−1, 1]
x0 � a1 a2 a3 a4 a5 t �

1.5 0.25 0.469 2.47 0.00250 0.411 2.18 0.0300 0.767
0.5 0.514 2.83 0.199 0.751 4.18 5.02 1.73
1 0.533 3.15 0.0207 1.64 9.80 141.91 4.87
10 −1.25 0.466 0.000150 −1.52 −0.30 0.0000641 0.477
100 −2.96 1.92 0.888 −1.90 0.617 0.034 −0.00813

5 0.25 0.0665 1.76 0.173 0.122 3.38 10.87 2.19
0.5 0.0779 2.14 0.288 0.376 10.97 645.82 7.55
1 0.0878 2.66 0.962 12.87 416.62 36,493,560 285.96
10 −0.000741 −0.603 0.326 0.210 −11.52 759.74 7.84
100 −0.00100 −0.617 0.220 0.632 −36.26 21033.71 23.69
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Fig. 6. Optimal extrapolation design densities and minimax weights for WLS and quadratic regression (Example 3): (a) design densities for x0=1.5;
(b) minimax weights for x0 = 1.5; (c) design densities for x0 = 5; (d) minimax weights for x0 = 5. Each plot uses two values of � : � = 10 (solid
line), �= 0.1 (dotted line).

We can construct the optimal unbiased extrapolation design m0(x) by forcing supf∈F EB(f, w, �)=�2
T through the

choice k = �/w, and then minimizing supg∈G EV(g, w, �) over w. From Theorem 4, the optimal weight function is

w0(x)= �
0[z̃T(x)A−1
S z̃(x0)]−4/3,

and the optimal unbiased extrapolation design density is

k0(x)= 
−1
0 [z̃T(x)A−1

S z̃(x0)]4/3,

with


0 =
∫

S

[z̃T(x)A−1
S z̃(x0)]4/3 dx.

The minimax MSEE is

min
(w,�)

sup
f∈F,g∈G

MSEE(f, g, w, m)= �2
T + min

(w,�)
sup
g∈G

EV(g, wm, �)= �2
S{r2

T ,S + ��−1/2
3/2
0 }.

We summarize these observations below.

Theorem 9. The density k0(x) of the optimal unbiased one-point extrapolation design measure �0, and optimal weights
w0, which minimize supf∈F,g∈GMSEE(f, g, w, �) subject to supf∈FEB(f, w, �)= �2

T are given by

k0(x)= [z̃T(x)A−1
S z̃(x0)]4/3∫

S
[z̃T(x)A−1

S z̃(x0)]4/3dx
,
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and w0(x)= �/k0(x). Minimax MSEE is

sup
f∈F,g∈G

MSEE(f, g, w0, �0)= �2
S

{
r2
T ,S + ��−1/2

[∫
S

[z̃T(x)A−1
S z̃(x0)]4/3 dx

]3/2
}

, (14)

attained at g0(x)= w
−1/2
0 (x).

Example 4. Consider an approximate log-linear multiple regression model E(Y |x) ≈ exp(zT(x)�0)=exp(�0+�1x1+
· · · + �qxq).

Note that the designs provided by Theorem 9 for this example depend on �1 = (�1, . . . , �q)T but not on �0. As in

Example 1 we can find locally most robust designs in a neighbourhood � of a starting value �
(0)
1 . We first construct

the design k0(x, �
(0)
1 ) and weights �/k0(x, �

(0)
1 ) provided by Theorem 9. We then find the least favourable �1,LF in �.

From Theorem 3, we find that this is equivalent to maximizing∫
S

{z̃T(x)A−1
S z̃(x0)}4

k2
0(x, �(0))

dx

over the occurrences of �1 in the numerator of the integrand. We then construct the unbiased optimal design for �LF,
and iterate to convergence.

When q = 1, S = [−0.5, 0.5] the unbiased minimax design density is

k0(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{e�LFx[(c − bx0)+ (ax0 − b)x]}4/3∫ 0.5
−0.5{e�LFx[(c − bx0)+ (ax0 − b)x]}4/3 dx

, when �LF �= 0,

(1+ 12x0x)4/3∫ 0.5
−0.5(1+ 12x0x)4/3 dx

, when �LF = 0,

where

a = 2 sinh(�LF), b = cosh(�LF)− a, c = 0.5 sinh(�LF)− 2b.

For a simple demonstration of the procedure described above, we take �= [0.5, 0.7] and consider the cases x0 =±2
and x0 =±9. For both x0 = 2 and x0 = 9, the iterates converge to �LF = 0.7. The unbiased minimax design density at
x0 = 2 is

k0(x)= 0.447{e0.7x(1.427+ 3.296x)}4/3,

and that at x0 = 9 is

k0(x)= 0.104{e0.7x(3.261+ 13.917x)}4/3.

When x0 =−2 and −9, we find �LF = 0.5. The unbiased minimax design density at x0 =−2 is

k0(x)= 2.063{e0.5x(0.261− 2.170x)}4/3,

and that at x0 =−9 is

k0(x)= 0.293{e0.5x(0.859− 9.465x)}4/3.

The corresponding optimal weights are w0(x)= 1/k0(x).

Example 5. Consider an approximate polynomial regression model E(Y |x) ≈ zT(x)�0=�0+�1x+· · ·+�pxp with
S = [−1, 1]. By Theorem 9, the unbiased optimal density is

k0(x)= [zT(x)A−1
S z(x0)]4/3∫

S
[zT(x)A−1

S z(x0)]4/3 dx

with optimal weights w0(x)= 0.5/k0(x).
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Fig. 7. Unbiased optimal densities and weights for SLR (Example 5): (a) design densities; (b) weights. Each plot uses two values of x0 : x0 = 1.5
(solid line) and x0 = 5 (dotted line).
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Fig. 8. Unbiased optimal design densities and weights for quadratic regression (Example 5): (a) densities; (b) weights. Each plot uses two values of
x0: x0 = 1.5 (solid line) and x0 = 10 (dotted line).

When p = 1, we have the design

k0(x)= 3.5x0(0.5+ 1.5x0x)4/3

(0.5+ 1.5x0)
7/3 − (0.5− 1.5x0)

7/3 .

When p = 2, the design is

k0(x) ∝ {(3− 5x2
0 )+ 4x0x + (15x2

0 − 5)x2}4/3.

See Figs. 7 and 8.

7. Comparisons and remarks

In Examples 2 and 3, we compared our designs for P2 and P3 with two more conventional competing designs �HL
and �U. In this section, we use the approximate polynomial models (p= 1, 2) of these examples to compare the robust
minimax designs for P2–P4 with each other and again with �HL and the continuous uniform design �U. Let �(2), �(3) and
�(4) denote the robust optimal designs that we obtained for P2, P3 and P4, respectively. Table 7 gives the comparative
values of �−2

S EV when there is no contamination and Table 8 gives those of �−2
S supf,gMSEE for �U when there is

maximal contamination. Of course, supf,gMSEE for �HL is infinite.

When there is no contamination, we denote by re(0)
HL(�(·)) the efficiencies of �(2), �(3) and �(4) relative to �HL

and by re(0)
U (�(·)) the efficiencies relative to �U. Under maximal contamination we write instead re(max)

U (�(·)) and

re(max)
HL (�(·))=∞. Table 9 provides the relative efficiencies re(0)

HL and re(0)
U while Table 10 provides the relative efficiencies

re(max)
U (�(·)).
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Table 7
Comparative values of �−2

S EV when there is no contamination of the polynomial regression model (Examples 2 and 3)

x0 � p = 1 p = 2 �HL;p = 1(2) �U ;p = 1(2)

�(2) �(3) �(4) �(2) �(3) �(4)

1.5 0.25 1.57 1.44 1.44 7.30 7.96 8.41 0.563(3.06) 1.94(12.27)
0.5 2.70 2.88 2.88 13.16 15.29 16.82 1.13(6.13) 3.88(24.54)
1 4.71 5.68 5.76 23.87 28.82 33.65 2.25(12.25) 7.75(49.08)
10 36.47 42.00 57.62 198.74 261.10 336.49 22.5(122.5) 77.5(490.78)
100 347.05 398.60 576.19 1923.71 2424.7 3364.90 225(1225) 775(4907.81)

5 0.25 13.77 14.14 14.60 1140.24 1240.23 1311.03 6.25(600.25) 19(1730.25)
0.5 24.81 28.27 29.21 2112.96 2387.43 2622.06 12.5(1200.5) 38(3460.5)
1 45.28 51.06 58.41 3950.39 4564.29 5244.11 25(2401.00) 76(6921)
10 383.80 432.99 584.13 35092.10 42875.19 52441.14 250(24010) 760(69210)
100 3726.18 4197.94 5841.26 343816.60 417639.3 524411.4 2500(240100) 7600(692100)

Table 8
Comparative values of �−2

S supf,gMSEE when there is maximal contamination of the polynomial regression model (Examples 2 and 3)

x0 � p = 1 p = 2 �U ;p = 1(2)

�(2) �(3) �(4) �(2) �(3) �(4)

1.5 0.25 3.50 2.59 2.59 19.50 14.71 10.39 3.78(23.10)
0.5 5.58 4.17 4.17 30.85 23.61 19.79 6.56(45.20)
1 9.27 7.27 7.35 51.63 40.85 38.58 12.12(89.40)
10 66.91 58.24 64.49 384.07 336.75 376.77 112.15(884.98)
100 629.58 552.78 635.90 3629.60 3211.04 3758.73 1112.55(8840.79)

5 0.25 22.42 16.65 16.95 1833.70 1422.04 1430.95 26.71(2586.07)
0.5 40.69 32.30 32.90 3410.07 2780.92 2860.90 52.43(5171.13)
1 74.91 62.85 64.80 6405.83 5432.51 5720.81 103.86(10341.27)
10 648.81 575.17 638.96 57275.39 52036.29 57199.07 1029.60(103403.65)
100 6330.03 5643.09 6380.57 561056.9 512051.6 571981.67 10286.98(1034027.5)

We have provided methods of constructing optimally robust designs for one-point regression extrapolation, taking into
account various model uncertainties. The results require extensive numerical work prior to implementation. However,
we can give some informal guidelines:

1. As � increases, the designs place more emphasis on variance minimization and less on protection from bias. As
we would expect, the experimenter should then place relatively more design points closer to the boundary of the
design space. With respect to the position of the extrapolation point relative to the design space, the experimenter
should place relatively more design points in that segment of the design space which is closer to the extrapolation
point, with this prescription becoming more emphatic when the extrapolation point is close to the design space.

2. Compared to designs for variance minimization alone, the designs we have found in this work are substantially
more uniform. They can roughly be described as being obtained by replacing the point masses of the variance
minimizing designs by uniform densities on regions containing, but not restricted to, these atoms.

3. Under heteroscedasticity the designs for P3 are, as expected, the most efficient. The gains in efficiency are greater
when � is at least moderately large. Particularly for small �, the numerical simplicity of the designs for P4 makes
them attractive competitors.
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Table 9
Relative efficiencies re(0)

HL(�(·)
) and re(0)

U (�(·)
) for the polynomial regression model (Examples 2 and 3)

x0 � p = 1 p = 2

�(2) : HL/U �(3) : HL/U �(4) : HL/U �(2) : HL/U �(3) : HL/U �(4) : HL/U

1.5 0.25 0.36/1.14 0.39/1.35 0.39/1.35 0.42/1.68 0.38/1.54 0.36/1.46
0.5 0.42/1.44 0.39/1.35 0.39/1.35 0.47/1.86 0.40/1.60 0.36/1.46
1 0.48/1.65 0.40/1.36 0.39/1.35 0.51/2.06 0.43/1.70 0.36/1.46
10 0.62/2.13 0.54/1.85 0.39/1.35 0.62/2.47 0.47/1.88 0.36/1.46
100 0.65/2.23 0.56/1.94 0.39/1.35 0.64/2.55 0.51/2.02 0.36/1.46

5 0.25 0.45/1.38 0.44/1.34 0.43/1.30 0.53/1.52 0.48/1.40 0.46/1.32
0.5 0.50/1.53 0.44/1.34 0.43/1.30 0.57/1.64 0.50/1.45 0.46/1.32
1 0.55/1.68 0.49/1.49 0.43/1.30 0.61/1.75 0.53/1.52 0.46/1.32
10 0.65/1.98 0.58/1.76 0.43/1.30 0.68/1.97 0.56/1.61 0.46/1.32
100 0.67/2.04 0.59/1.81 0.43/1.30 0.70/2.01 0.57/1.66 0.46/1.32

Table 10
Relative efficiencies re(max)

U (�(·)
) for the polynomial regression model (Examples 2 and 3)

x0 � p = 1 p = 2

�(2) �(3) �(4) �(2) �(3) �(4)

1.5 0.25 1.08 1.46 1.46 1.18 1.57 2.22
0.5 1.18 1.57 1.57 1.47 1.91 2.28
1 1.31 1.67 1.65 1.73 2.19 2.32

10 1.68 1.93 1.74 2.30 2.63 2.35
100 1.77 2.01 1.75 2.44 2.75 2.35

5 0.25 1.19 1.60 1.58 1.41 1.82 1.81
0.5 1.29 1.62 1.59 1.52 1.86 1.81
1 1.39 1.65 1.60 1.61 1.90 1.81

10 1.59 1.79 1.61 1.81 1.99 1.81
100 1.63 1.82 1.61 1.84 2.02 1.81
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Appendix. Derivations

The proof of Theorem 5 is very similar to but simpler than that of Theorem 6, and so is omitted.

Proof of Theorem 6. We seek a nonnegative function m(x) minimizing (8) subject to
∫
S

m(x) dx= 1. For a Lagrange
multiplier s it is necessary and sufficient that m minimize

(
√

�m + rT ,S)2 + ��−1/2
[∫

S

{lm(x)m(x)}2 dx
]1/2

− 2s

∫
S

m(x) dx

among all densities, and satisfy the side condition. After a lengthy calculation we obtain the first-order condition

I :=
∫

S

{P(x)m(x)−Q(x)− u}(m(x)−m1(x)) dx�0 (A.1)
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for all densities m1, where

P(x)= (z̃T(x)�)2[1+ t (z̃T(x)�)2] and Q(x)= (z̃T(x)�)(z̃T(x)�),

for

�= B−1z̃(x0),

t = �

2
�−1/2

(
1+ rT ,S√

�m

)−1[∫
S

{lm(x)m(x)}2 dx
]−1/2

> 0,

�= B−1
{

K + t

2

[∫
S

z̃(x)z̃T(x)lm(x)m2(x) dx
]}

�,

u=
(

1+ rT ,S√
�m

)−1

s.

To see the consequences of (A.1), write S+ for the subset of S on which m(x) > 0, and S0 = S\S+. Let c =
supS{P(x)m(x) − Q(x) − u}, let {xj } be a sequence of points in S+ with P(xj )m(xj ) − Q(xj ) − u approaching
c, and consider a sequence {m1j } of point masses at xj . Then for this sequence (A.1) implies∫

S+
{P(x)m(x)−Q(x)− u}m(x) dx�c� sup

S+
{P(x)m(x)−Q(x)− u},

so that in particular P(x)m(x)−Q(x)− u ≡ c on S+ and −Q(x)− u= P(x)m(x)−Q(x)− u�c on S0. Thus

m(x)= Q(x)+ u+ c

P (x)
, x ∈ S+. (A.2)

Conversely, if (A.2) holds and Q(x)+ u+ c�0 on S0 then

I = c

∫
S+

(m(x)−m1(x)) dx +
∫

S0
[Q(x)+ u]m1(x) dx

= c − c

∫
S+

m1(x) dx +
∫

S0
[Q(x)+ u+ c]m1(x) dx − c

∫
S0

m1(x) dx

= c − c

∫
S

m1(x) dx +
∫

S0
[Q(x)+ u+ c]m1(x) dx

�0,

satisfying (A.1). Thus, in order that (A.1) hold, it is necessary and sufficient that (A.2) hold, for any c such that the
right-hand side of (A.2) is nonnegative throughout S. More generally, m has the form:

m(x)= [Q(x)+ u+ c]+
P(x)

= [(z̃T(x)�)(z̃T(x)�)+ �]+
(z̃T(x)�)2[1+ t (z̃T(x)�)2] , (A.3)

with �= u+ c. Of course, �, �, � and t themselves depend on m. Rather than solve (A.3) for m it is simpler merely to
choose these constants so as to satisfy

∫
S

m(x) dx = 1 and minimize (8). �

Proof of Theorem 7. As in the preceding proof, we seek a density m(x) minimizing

(
√

�m + rT ,S)2 + ��−1/2
{∫

S

[lm(x)m2(x)]2/3 dx
}3/2

− 2s

∫
S

m(x) dx,

this leads to

I :=
∫

S

{a(x)m1/3(x)+ b(x)m(x)− c(x)− u}(m−m1) dx�0,
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where u and � are as before and

a(x)= t1/3(z̃T(x)�)4/3 > 0,

b(x)= lm(x)= (z̃T(x)�)2 > 0,

c(x)= (z̃T(x)�)(z̃T(x)�),

for

t = �3�−3/2
{

1+ rT ,S√
�m

}−3[∫
S

l
2/3
m (x)m4/3(x) dx

]3/2

> 0,

�= B−1
{

K + t1/3
∫

S

z̃(x)z̃T(x)l
−1/3
m (x)m4/3(x) dx

}
�.

Continuing as in the proof of Theorem 6 we find that on S+,

a(x)m1/3(x)+ b(x)m(x)− c(x)− � ≡ 0 (A.4)

for a constant �. To solve (A.4) let d(x)=c(x)+�−b(x)m, obtaining d3+ (a3/b)d−a3(c+�)/b=0. Since the linear
coefficient is positive there is only one real root, which can be obtained from Cardano’s formula (Dunham, 1990). The
proof is completed upon writing d(x) in terms of �, �, � and t. �

References

Dette, H., Wong, W.-K., 1996. Robust optimal extrapolation designs. Biometrika 83, 667–680.
Draper, N.R., Herzberg, A., 1973. Some designs for extrapolation outside a sphere. J. Roy. Statist. Soc. Ser. B 35, 268–276.
Dunham, W., 1990. Cardano and the solution of the cubic. Journey through Genius: The Great Theorems of Mathematics. Wiley, New York, pp.

135–154. (Chapter 6).
Fang, Z., Wiens, D.P., 1999. Robust extrapolation designs and weights for biased regression models with heteroscedastic errors. Canad. J. Statist.

27, 751–770.
Fang, Z., Wiens, D.P., 2000. Integer-valued minimax robust designs for estimation and extrapolation in heteroscedastic approximately linear models.

J. Amer. Statist. Assoc. 95, 807–818.
Ford, I., Kitsos, C.P., Titterington, D.M., 1989. Recent advances in nonlinear experimental design. Technometrics 31, 49–60.
Heo, G., Schmuland, B., Wiens, D.P., 2001. Restricted minimax robust designs for misspecified regression models. Canad. J. Statist. 29, 117–128.
Hoel, P.G., Levine, A., 1964. Optimal spacing and weighting in polynomial prediction. Ann. Math. Statist. 35, 1553–1560.
Hosmer Jr., D.W., Lemeshow, S., 1998. Applied Survival Analysis. Wiley, New York.
Huang, M.N.L., Studden, W.J., 1988. Model robust extrapolation designs. J. Statist. Plann. Inference 18, 1–24.
Huber, P.J., 1975. Robustness and designs. In: Srivastava, J.N. (Ed.), A Survey of Statistical Design and Linear Models. North Holland, Amsterdam,

pp. 287–303.
Nelson, W., 1990. Accelerated Testing: Statistical Models, Test Plans, and Data Analyses. Wiley, New York.
Seber, G.A.F., Wild, C.J., 2003. Nonlinear Regression. Wiley, New York.
Sinha, S., Wiens, D.P., 2002. Robust sequential designs for nonlinear regression. Canad. J. Statist. 30, 601–618.
Spruill, M.C., 1984. Optimal designs for minimax extrapolation. J. Multivariate Anal. 15, 52–62.
Wiens, D.P., 1992. Minimax designs for approximately linear regression. J. Statist. Plann. Inference 31, 353–371.
Yue, R.-X., Hickernell, F.J., 1999. Robust designs for fitting linear models with misspecification. Statist. Sin. 9, 1053–1069.


