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Abstract

This paper is devoted to a qualitative and quantitative study of

topological spaces, the gestalt composition spaces, built on premotif

collections of musical scores, and for the modelling of the motivic

analysis of music. Through shape types, gestalts, and premotives dis-

tance, we obtain a motivic hierarchy of a score. By reason of the non-

Hausdor� and asymmetric properties of the topologies, we consider

`reciprocal' functions, presence and content, quantifying the geomet-

ric information of these topological spaces. This model is completed
by visualizing these non-intuitive topologies through motivic evolu-

tion trees (MET), graphical representation of an overall spectrum of

a score's motivic structure.
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1 Introduction

Mathematics are commonly used, at di�erent levels, to inquire into the mo-
tivic structure of a musical score. It is well-known that Forte [7] used set
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theory to model the structure of atonal music which was later adapted and
extended to study motivic structures in music by musicologists Morris [21],
Rahn [23], Lewin [11], and others (e.g. [9]). While in this musical set theory,
motif equivalence is a straighforward relation motif similarity is a concept
that remains diÆcult to manage (e.g. [22]). These approaches succeed in
grouping equivalent motives and give numerical values for similarity between
`some' pairs of motives: It does not however restructure nor organize in a
hierarchy the collection of a score's motives.

We propose a topological approach for which concepts of equivalence
and similarity `determine' a global hierarchical structure, called a motivic
topology, on a collection of a score's motives. These topologies are however
`asymmetric', and this forces us to de�ne `presence' and `content' functions
in order to extract the geometric (motivic) information of the topologies.
With these two `reciprocal' functions we build the score's motivic evolution
tree, a graphical represention of an overall spectrum of its motivic structure.

These motivic topologies, modeling motivic analysis of music, are part
of the Mathematical Music Theory (MaMuTh) [13],[16]. More precisely they
are a particular case of the Local Composition Theory. A software implemen-
tation of our topological approach is available in the module MeloRubetter

of the software RUBATOr [26]. Results from applications of our model
(through RUBATOr) to di�erent scores, such as Schumann's Tr�aumerei [19]
and Webern's Variation f�ur Klavier op. 27/2 [2], support the methodology's
validity.

Following Reti [24],[25] and Kopfermann [20]1, the main goal of motivic
analysis is to recognize the semantics of motivic units within a score, i.e.
to �nd out which sequences of tones are the germs in the evolution of the
motivic and thematic content. Reti's approach does not impose the germinal
motives from outside, but construct the germs from the thorough analysis of
all possible motif structures and relations within a given score. In order to
model this analysis we propose a topological approach for which our space is
the set of all possible germinal motives, called premotives in our theory.

We �rst (section 2) build a mathematical system whose objects are asso-
ciated with the instances of motivic analysis of music. Two structural levels
are distinguished: premotives and abstract premotives which are connected
together by the shape type mapping. An equivalence relation, leading to the
concept of gestalt, and a distance function are de�ned on the space of ab-
stract premotives and are lifted to the premotives. We de�ne neighborhoods
of premotives (and of gestalts) which, under certain conditions, form an open
base (Theorem 1) for the motivic topology. At last we introduce the motivic
space of a score called a gestalt composition space.

Because of the `non Hausdor�' nature (Proposition 2) of the motivic topo-

1See the �nal remark in Kopfermann's translation of Reti's work on Schumann'sKinder-

szenen.
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logical spaces, we cannot directly extract the geometric information of these
spaces. We therefore introduce (section 3) presence and content functions in
order to `quantify' the motivic information from the topologies. These two
functions are closely related to each other: by stressing the asymmetry in the
topology they are reciprocal to each other (Lemma 2). In the particular sit-
uation when we consider a `very small' neighborhood radius (corresponding
to intolerance for premotif similarity cognition), we observe this reciprocity
through a simple change of bases transformation (Theorem 2) linking the
two functions. At last this reciprocity is stressed by the fact that, when con-
sidering both functions evaluated at changing epsilons, they each generate a
(real) vector space with the same dimension (Conjecture 1).

Finally (section 4) we bring together these two reciprocal functions into
the weight function. In order to extract the `essential' motivic information of
our topologies, we `reduce' this weight function to the qualitative function.
We visualize the image of the latter function through a motivic evolution
tree (MET) (De�nition 14), a concept related to the systematic variation of
the neighborhood radius (premotif similarity parameter). Such a MET was
intuitively introduced in [5], and this last section is meant to present the
mathematical structure behind this concept.

2 Construction of Motivic Topologies

The purpose of this section is to elaborate the basis of the mathematical
model of structures that can be associated with musical objects handled in
motivic analysis. Our objects, called premotives, are local compositions [13]
with a speci�c restriction on the onset values. We map the premotives into
di�erent spaces according to concepts of shape types, t-spaces and abstract
premotives, and we give examples of shape types, such as COM-matrix and
elastic types. Then we let a paradigmatic group [13] act on a t-space, and
thereby we introduce the gestalt of a premotif. We then de�ne a distance
dt;n between premotives of same (abstract) cardinality n, and under certain
conditions, we can deduce from dt;n distance functions gdt;n between the
gestalts of these premotives. Premotives, shape types, paradigmatic groups
and pseudo-metrics on premotives are bricks for the basic framework.

Then, sometimes, the distance between premotives can be `controlled' by
the distance between their superpremotives: this is the \Inheritance Prop-
erty". This property, as we shall see for Euclidean metric on the Dia-space,
is not automatically satis�ed. Using the distance functions gdt;n, we de�ne
Epsilon-neighborhoods of premotives and demonstrate that, whenever the
Inheritance Property is satis�ed, the collection of all Epsilon-neigborhoods
forms a base for a topology Tt on the set of all premotives MOT . As an im-
portant result, we deduce from Tt, a topology TGes;t on the (quotient) space
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of gestalts GES. Finally, we investigate some properties of the Epsilon-
neighborhood topology for GES and for Ges?, the space of gestalts of a
given score.

For more details of this construction see [4], and for a detailed example
of this whole construction in the context of the American Set Theory, see
[5]. Through the construction, we include some remarks and examples on
music in order to help the reader to associate the mathematical model with
music. However, for more detailed considerations and justi�cations we refer
the reader to [4] (Chapter 5), [5], [16], and [19].

2.1 Premotives and Abstract Premotives

Given an arbitrary commutative ring R with unity we consider the cate-
gory RLoc [13] for which an object, called a local composition, is a couple
(K;N), where K is a non-empty �nite subset of a left R�module N , and a
morphism (K;N) ! (L;O) is a set map f : K ! L which extends to an
aÆne R-homomorphism F : N ! O. For our purposes the left R-modules
are �nite-dimensional vector spaces over R which are associated with the
parametrization of tones in the classical score contexts. More speci�cally,
using the tone parameters \onset" (O), \pitch" (P ), \loudness" (L), \du-
ration" (D), \glissando" (G), and \crescendo" (C), we consider the vector
space RfO;P;:::g �= Rn, where fO;P; :::g is a subset of fO;P; L;D;G;Cg con-
taining at least O and P and n � 6 is the set cardinality of fO;P; :::g.

De�nition 1 A premotif is a local composition (M;RfO;P;:::g) such that the
canonical projection PO : RfO;P;:::g ! R

fOg induces a bijective morphism
pO : M ! PO(M) of local compositions. A subpremotif (resp. a super-
premotif) of a premotif (M;RfO;P;:::g) is a premotif (M�;RfO;P;:::g) such that
M� � M (resp. M� � M). The cardinality of a premotif (M;RfO;P;:::g)
is the set cardinality jM j of M .

From now on we �x the space RfO;P;:::g and identify the premotif (M;RfO;P;:::g)
with M . We set MOT = fM j M is a premotifg, and we have MOT =`

nMOTn where MOTn = fM jM is a premotif such that jM j = ng.

Example 1 Consider the space RfO;P;Dg. We �x the parameters O;P , and
D in a way which is standard in Mathematical Music Theory [13]: For the
pitch values, we select the usual gauge with C4 = 0, and the chromatic pitch
set being parametrized by the integers, i.e. C]4 = D[4 = 1, D4 = 2, etc.
Duration values are taken by the prescription that 1 in the O-coordinate cor-
responds to the literal mathematical value of 4=4 duration. The �rst tone of
a score is given onset value 0.

We consider the following sets of tones:
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These two sets of tones form respectively premotives.  However, the set 
containing the three tones

is not a premotif.

    Set3

Premotif 1 Premotif  2

The two sets Premotif1 = f(1
2
; 9; 1

2
); (3

2
; 2; 1

2
); (11

4
; 4; 1

4
)g and Premotif2 =

f(0; 2; 1
2
); (2; 0; 1

2
); (3

2
; 2; 1

2
)g are premotives but the set Set3 is clearly not a

premotif.

Intuitively, a premotif is a set of tones in which only one tone occurs at
a given onset time, and in which tones are not necessarily consecutive in the
given composition. Premotives are not necessarily germs of a composition,
but only a priori candidates for carrying such a motivic meaning. The pre�x
"pre" was then introduced to make clear the di�erence between the formal
structure of the mathematical theory and musically signi�cant motivic germs,
the "real" motives.

The idea of the next de�nition is that we want to compare premotives,
not as such but via "simpler" images. In musicology this means that we
compare some of their "relevant" shape properties.

De�nition 2 A shape type t is a family f�t;ngn2N+ 2 of non-empty sets
�t;n together with a mapping

2
N+ = f1; 2; 3; :::g.
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t : MOT (RfO;P;:::g) ! �t :=
S

n2N+�t;n
M 7! t(M)

such that for each n 2 N+ and M 2 MOTn, we have t(M) 2 �t;n. And we
have the following restriction map tn := tjMOTn:

tn : MOTn �! �t;n
M 7�! tn(M)

The set �t is called a t-space, and an element of �t is called an abstract
premotif (of type t). For an element b 2 �t let abcard(b) := minfn 2
N; b 2 �t;ng be the abstract cardinality of b, and for a premotif M we
call abcardt(M) := abcard(t(M)) its abstract cardinality (of type t).
We set �tjk := fb 2 �t j abcard(b) = kg and MOT :=

`
kMOT jk where

MOT jk = fM jM premotif s.t. abcardt(M) = kg.

Here are some classical shape types in the MaMuTh:

1. Rigid Shape Type: We �rst consider the canonical projection
PrfO;Pg : RfO;P;:::g ! R

fO;Pg. For each n 2 N, we consider then the
mapping

Rgn : MOTn �! (RfO;Pg)
n

M 7�! Rgn(M) = (q0; q1; :::; qn�1)

where Rgn(M) = (q0; q1; :::; qn�1) is the sequence of the elements q0 =
(o0; p0); :::; qn�1 = (on�1; pn�1) of PrfO;Pg(M) � RfO;Pg such that o0 <
o1 < ::: < on�1. The mapping Rg =

`
nRgn together with the family

f�Rg;n := (RfO;Pg)
ngn2N de�nes the rigid type.

Example 2 The abstract premotives of Premotif1 and Premotif2 of
rigid type are respectively Rg3(Premotif1) = ((1

2
; 9); (3

2
; 2); (11

4
; 4)) and

Rg3(Premotif2) = ((0; 2); (3
2
; 2); (2; 0)).

2. COM-Matrix Shape Type: Consider the mapping

COMn : Rgn(MOTn) �! f�1; 0; 1gn�n
(q0; q1; :::; qn�1) 7�! COMn((q0; q1; :::; qn�1))

where COMn((q0; q1; :::; qn�1)) = (Æi;j)i;j for which (with notation qi =
(oi; pi))

Æi;j =

8<
:

1 if pj � pi > 0
0 if pj = pi

�1 if pj � pi < 0:
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This matrix (Æi;j)i;j is antisymmetric and has zeros in its diagonal. For
n � 2, we consider also

UTrn : f�1; 0; 1gn�n �! f�1; 0; 1gn(n�1)=2
(bi;j)i;j 7�! (b1;2; b1;3; :::; b1;n; b2;3; :::; b(n�1);n)

which means that the image UTrn((bi;j)i;j) is the the upper triangle
values of the matrix (bi;j)i;j.

Let Com1 be de�ned as the unique mapping MOT1 ! f1g, and for
n � 2 we de�ne the mapping

Comn : MOTn �! f�1; 0; 1gn(n�1)=2
M 7�! Comn(M) := UTrn Æ COMn ÆRgn(M):

The mapping Com =
`

nComn together with the family �Com =

f1gS ff�1; 0; 1gn(n�1)=2gn�2 de�nes the COM-matrix shape type.

Example 3 The abstract premotives of Premotif1 and Premotif2 of
COM-Matrix shape type are respectively Com3(Premotif1) = (�1;�1; 1)
and Com3(Premotif2) = (0;�1;�1).

3. Diastematic Index Shape Type: We �rst consider the mapping

UV ecn : f�1; 0; 1gn�n �! f�1; 0; 1g(n�1)
(bi;j)i;j 7�! (b1;2; b2;3; :::; b(n�1);n):

The diastematic index shape type Dia is de�ned through the mapping
Dia1, which is the unique mapping MOT1 ! f1g, and for n � 2,
through the mappings

Dian : MOTn �! f�1; 0; 1g(n�1)
M 7�! Comn(M) := UV ecn Æ COMn ÆRgn(M):

Example 4 The abstract premotives of Premotif1 and Premotif2 of
diastematic index type are respectively Dia3(Premotif1) = (�1; 1) and
Dia3(Premotif2) = (0;�1).

4. Elastic Shape Type: The mapping El1 is de�ned to be the unique
mapping MOT1 ! f1g. For n � 2, we de�ne the mapping

Eln : MOTn �! R
2(n�1)

M 7�! (�1; :::; �n�1; r1; :::; rn�1) 2 R2(n�1)

where, by considering Rgn(M) = (q0; q1; :::; qn�1), the value �i is the
slope angle (radian) of ����!q(i�1)qi, 1 � i � n � 1, with respect to the
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O-axis, and ri = li=L(M) is the ratio of li, the Euclidean length of
qi�1qi in the real vector space R2, over the length L(M) :=

Pn�1
i=1 li.

The elastic shape type is then de�ned by El =
`

nEln together with
the family f1g [ fR2(n�1)gn�2.

Example 5 The abstract premotives of Premotif1 and Premotif2 of
elastic type are respectively El3(Premotif1) = (�1:429; 1:012; 0:688;
0:312) and El3(Premotif2) = (0;�1:326; 0:421; 0:579).

In this work we meet t-spaces only of the form �t :=
`

n �t;n, and therefore
for any n 2 N and for any M 2 MOTn, abcardt(M) = n. The toroid shape
type To [4] would be an example of such space with �To 6=

`
n �To;n.

2.2 Gestalts

So far some premotives are identi�ed through the mapping t. In general
this identi�cation is not suÆcient in the sense that we want to let a group
act on abstract premotives (eventually on premotives) to yield a coarser
classi�cation of the premotives.

De�nition 3 Given a shape type t a paradigmatic group P for t is a
group acting from the left on �t:

P � �t �! �t
(p; b) 7�! p � b

and such that each space �t;n is P -invariant, i.e. 8p 2 P; 8b 2 �t;n p�b 2 �t;n.

It is easy to show [4] that a paradigmatic group leaves invariant each �tjk,
k 2 N.

De�nition 4 Given a shape type t and a paradigmatic group P the gestalt
of a premotif M (of type t) is Gest(M) := t�1(P � t(M)). For two
premotives M and N if Gest(M) = Gest(N), then we say that M and N
have same gestalt and write M �Ges N , for which \�Ges"is in fact an
equivalence relation on MOT . We call the surjective mapping

Gest : MOT � MOT= �Ges

M 7! Gest(M)

the gestalt mapping (for type t and paradigmatic group P ). We
denote GES := Gest(MOT ) = MOT= �Ges and GESk := Gest(MOT jk).
It is clear that GES =

`
kGESk, and for each k 2 N and each G 2 GESk

we call cardt(G) = k the (t-)cardinality of gestalt G.
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It can occur that a paradigmatic group also acts on premotives. We say
that a shape type t is P -equivariant whenever the action of P on the space
�t is \induced" from an action on the premotives in the sense that for all
p 2 P and for allM 2MOT we have p�t(M) = t(p�M). Usually, equivariant

actions are de�ned when P is a subgroup of
�!
GL(RfO;P;:::g) (the group of aÆne

R-automorphisms of the �xed vector space RfO;P;:::g), acting pointwise on the
premotives M 2MOT , i.e. p �M := fp � x; x 2Mg for p 2 P .

Example 6 Let CP be the aÆne Klein group within
�!
GL(RfO;P;:::g). The

group CP is de�ned as the subgroup of
�!
GL(RfO;P;:::g) generated by the sub-

group of translations in onset and pitch directions, and by the linear Klein
group LCP = hU;Ki generated by the pitch inversion U : U(o; p; :::) =
(o;�p; :::), and the retrograde K: K(o; p; :::) = (�o; p; :::). The group CP
is a well-known transformation group (formed by transpositions, inversions,
and retrograde) in European counterpoint. This is why it is called the coun-
terpoint group in Mathematical Music Theory [13]. The group CP acts
pointwise on MOT (RfO;P;:::g), since translations, inversion, and retrograde
transform premotives into premotives. In fact CP acts as a paradigmatic
group for t = Rg, Com, Dia and El, and t is then P -equivariant under the
pointwise action of CP on MOT (RfO;P;:::g).

For example, if we consider the COM-Matrix shape type and the CP
group, the gestalt GesCom(Premotif1) of Premotif1 is composed of all pre-
motives M 2MOT such that Com3(M) = (�1;�1; 1), (1; 1;�1), (�1; 1; 1),
or (1;�1;�1).

Since our goal is to construct a topology on the gestalt level we de�ne on
these premotif classes a corresponding concept to \subpremotif".

De�nition 5 Given a shape type t and a paradigmatic group P we say that
a gestalt G� is a small gestalt of the gestalt G, denoted by G�

@ G, if there
exist premotives M� 2 G� and M 2 G such that M� �M .

If we have the property that for any triple M;M�, and M1 2MOT such
thatM� �M and M1 2 Gest(M), there exists a subpremotifM�

1 of M1 such
that M�

1 2 Gest(M
�), then we say that gestalts behave well (for t) and

the small gestalt relation is a transitive relation.

2.3 Distance on Premotives and on Gestalts

Until now premotives as well as abstract premotives are regrouped by the
equivalence relation "�Ges". The next step is to include the concept of
similarity in our structure. Similarity is applied to premotives and then to
gestalts (well-de�ned!).
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De�nition 6 Given a shape type t let d = (dn)n2N+ be a sequence of pseudo-
metrics dn where dn is de�ned on the space �tjn for each n 2 N+. Let M and
N 2MOT jn where n 2 N+. We set

dt;n(M;N) := dn(t(M); t(N))

which de�nes a pseudo-metric on MOT jn. Let dt := (dt;n)n2N+ . Then we
say that dt (respectively d) is a pseudo-metric on MOT (resp. �t) called the
(t-)distance on MOT .

Moreover, for a given paradigmatic group P such that t is P -equivariant,
if for all n 2 N, all p 2 P and all a; b 2 �tjn, dn(p � a; p � b) = dn(a; b), we
say that P consists of isometries with respect to d on space �t, and we
have a pseudo-metric [4] on GESk: for each k 2 N

dG;k(G1; G2) := inf
p2P

dt;n(p �M1;M2)

where G1; G2 2 GESk and M1;M2 2 MOT jk for which M1 2 G1 and M2 2
G2. For any two premotives M1;M2 2MOT jk we set the gestalt distance
between premotives M1 and M2 as gdt;k(M1;M2) := dG;k(Gest(M1);
Gest(M2)) (which is again a pseudo-metric on MOT jk for any k 2 N).
Then we say again that dG (resp. gdt) is a pseudo-metric on GES (resp. on
MOT ).

If there is no possible confusion we omit in the notation the abstract cardi-
nality index n of dn, dt;n, gdt;n, and of dG;n.

Example 7 For two abstract premotives b1 and b2 in �Rg;n = (RfO;Pg)2 �!
R
2n, we can for example use the Euclidean metric Edn on R2n. This de-

�nes a (Rg-)distance, called the Euclidean distance, on MOT . Similar for
�Com;n = f�1; 0; 1g(n�1)n=2 � R

(n�1)n=2, �Dia;n = f�1; 0; 1g(n�1) � R
(n�1),

and �El;n = R
2(n�1), whenever n � 2, and for n = 1 we set Ed1 = 0.

Similarly, given a shape type t and a n 2 N we can de�ne a pseudo-metric
REdn := Edn=k(t; n), for which REd is called the relative Euclidean dis-
tance, on MOTn where k(t; n) is n if t = Rg or Com, is n � 1 if t = Dia,
and is 2(n� 1) if t = El.

For example, the Com-relative Euclidean distance between Premotif1 and
Premotif2 is REdCom(Premotif1; P remotif2) =

p
5
3

and their gestalt dis-

tance is gREdCom(Premotif1; P remotif2) = minf
p
5
3
;
p
5
3
; 1; 1

3
g = 1

3
.

2.4 Motivic Topologies

We note that until now we have restructured the set MOT of all premotives
by means of an equivalence relation, identifying premotives with same ab-
stract cardinality, and a distance function on premotives again with same
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abstract cardinality. Basically the set MOT has been restructured on each
of its layers MOT jn (each MOT jn is a pseudo-metric space!), but not as a
whole. Here is now the step where premotives with di�erent abstract cardi-
nalities are linked:

De�nition 7 Given a shape type t, a pseudo-metric d on �t, and a paradig-
matic group P of isometries with respect to d, and such that t is P -equivariant,
let � 2 R+ = fx 2 Rjx > 0g. Then

V�(M) := fN 2MOT j 9N� � N s.t. gdt(M;N�) < �g
is called the �-neighborhood of the premotif M 2 MOT (with respect
to t, P , and d).

However such neighborhoods do not necessarly form an open base for a
topology on MOT since it is not true in general that the intersection of
�-neighborhoods is a union of such neighborhoods. We need then to impose
a condition on all premotives `living' together within an �-neighborhood.

2.4.1 Inheritance Property

De�nition 8 Given a shape type t and a pseudo-metric dt on MOT , if for
any M 2MOT jn, n 2 N+, any subpremotif M� �M and � > 0, there exists
Æ > 0 such that for any N 2MOT jn,
dt(M;N) < Æ ) 9 subpremotif N� � N s.t. abcardt(N

�) = abcardt(M
�)

and dt(M
�; N�) < �;

then we say that dt is (t-)inherited.

If a paradigmatic group P consists of isometries with respect to d and t is
P -equivariant, then if dt is inherited, gdt is also inherited [4].

Example 8 For the rigid, Com-Matrix, and elastic shape types the Eu-
clidean and the relative Euclidean distances on MOT are inherited. However
the distances EdDia and REdDia for the diastematic index shape type is not
inherited.

Intuitively the inheritance property insures us that two similar premotives
are similar in their subpremotives. For example, a metric on �Dia cannot be
Dia-inherited since Dia disregards the subpremotif information with respect
to the vector's (Dia-abstract premotif) total information: What could we
say, for example, of the (abstract) subpremotif composed with �rst and last
tone of the premotif, for which its Dia-abstract premotif is (1;�1)? That
could be (1), (0) or even (�1)!

The inheritance property links premotives on di�erent layersMOT jn, and
it insures us also of a stability on the gestalt level:
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Lemma 1 Given a shape type t, a pseudo-metric d on �t, and a paradigmatic
group P of isometries with respect to d, and such that t is P -equivariant, if
the pseudo-metric dG is a metric on GES and dt is inherited, then gestalts
behave well for t.

PROOF: Let M;M1, and M� 2 MOT . Suppose that M� � M and M1 2
Gest(M), hence gdt(M1;M) = 0. Let r := minfgdt(M 0

1;M
�) where M 0

1 �
M1g, and suppose r > 0. Since dt is inherited, then for � = r=2 > 0,
there exists Æ > 0 such that any premotif M1 with gdt(M;M1) < Æ contains
a subpremotif M�

1 � M1 s.t. gdt(M
�;M�

1 ) < ". However gdt(M;M1) =
0 < Æ which implies that gdt(M

�;M�
1 ) < r for a M�

1 � M1: contradiction.
Therefore, r = 0 and M� and M�

1 have same gestalt since dG is a metric on
GES. Hence, gestalts behave well for t. �

It is important to notice that the inheritance condition is suÆcient to
insure us that the �-neighborhoods form a base for a topology on MOT .

2.4.2 Motivic Spaces

Proposition 1 Given a shape type t, a pseudo-metric d on �t, and a paradig-
matic group P of isometries with respect to d, and such that t is P -equivariant,
if dt is inherited, then the collection fV�(M)j M 2 MOT; � > 0g of all �-
neighborhoods forms a base for a topology Tt on MOT .

We call (MOT; Tt) a motivic space and Tt a motivic topology (with
respect to t, P , and d) for MOT .

PROOF : It is suÆcient to show that for all O;M1 2 MOT and any "1 > 0
such that O 2 V"1(M1) there exists an "3 > 0 such that V"3(O) � V"1(M1).
Since O 2 V"1(M1), there exists a premotif O� � O such that gdt(O

�;M1) <
"1. Using the inheritance property, given this O� � O and " = "1 �
gdt(O

�;M1) > 0, there exists a Æ > 0 such that we have

gdt(O;N
�) < Æ ) 9 subpremotif N�� � N� s.t. gdt(N

��; O�) < ":

Let "3 = Æ. Let N 2 V"3(O). This means that we have a subpremotifN� � N
such that gdt(O

�; N�) < "3. Therefore, we �nd a subpremotif N�� � N� as
required by the above implication. But then:

gdt(N
��;M1) � gdt(N

��; O�) + gdt(O
�;M1)

< "+ gdt(O
�;M1)

= "1 � gdt(O
�;M1) + gdt(O

�;M1)
= "1 :

Therefore, there exists a Æ > 0 such that when N 2 VÆ(O), then N 2 V"1(M1)
and hence V"3(O) � V"1(M1). �
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Since the "-neighborhoods V in MOT are stable with respect to gestalts,
i.e. that all open sets inMOT are unions of gestalts, we also have a (quotient)
topological structure on the gestalt level.

Theorem 1 Given a motivic topology Tt on MOT as described in Proposi-
tion 1, consider on GES the quotient topology Tt;Ges relative to the gestalt
mapping Gest and to Tt. We suppose that dG is a metric on GES and dt is
inherited. Then Gest is an open mapping. Moreover the collection of all sets

U�(H) := fG 2MOT= �Ges j9G�
@ G s.t. dG(G

�; H) < �g

where H 2 GES and � > 0, forms a base for Tt;Ges. We call (GES; Tt;Ges)
a motivic gestalt space and Tt;Ges an motivic gestalt topology (with
respect to t, P , and d) for GES.

PROOF: We �rst observe that for a given M 0 2 MOT and " > 0, by
the de�nition of the relation \@" and the U 's, we have Gest

�
V"(M1)

�
=

U"(Gest(M1)). We now claim that Ges�1t
�
Gest(V"(M1))

�
= V"(M1) for all

" > 0 and M1 2 MOT . It is clear that V"(M1) � Ges�1t
�
Gest(V"(M1))

�
.

For the other inclusion, suppose that M2 2 Ges�1t
�
Gest(V"(M1))

�
. Then we

have Gest(M2) = Gest(M) where M 2 V"(M1). By de�nition, this means
that there exists M� � M such that gdt(M

�;M1) < ". Since gestalts be-
have well, there exists M�

2 � M2 such that Gest(M
�
2 ) = Gest(M

�), and
gdt(M

�
2 ;M1) = gdt(M

�;M1) < ". Hence, M2 2 V"(M1). �

2.4.3 Motivic Topology of a Score

We have now a topological structure on MOT (and on GES), the set of
all possible premotives. We want to model the motivic analysis of a score
and if we follow Reti's [24] approach, we should exclusively deal with premo-
tives taken in the score. Obviously we have in MOT (in�nitely) too many
premotives. And this motivates the last step of our topological construction.

De�nition 9 Given a motivic space (MOT; Tt) a motivic composition
space (MOT ?; T ?

t ) (with respect to (MOT; Tt)) is a �nite non-empty sub-
set MOT ? of MOT , satisfying the Subpremotif Existence Axiom: This
means that for a given nmin 2 N, every subpremotif M� � M of any premo-
tif M 2 MOT ? with jM�j � nmin is a premotif within MOT ?. The relative
topology of Tt on MOT ? is denoted by T ?

t .
A gestalt composition space (Ges?; T ?

t;Ges) (with respect to a motivic
composition space (MOT ?; T ?

t )) is the space Ges? := Gest(MOT ?) together
with the quotient topology T ?

t;Ges relative to the gestalt mapping Gest (re-
stricted to MOT ?) and to T ?

t .

13



For a given score, one could think of constructing a motivic topology
directly on Ges?. However this would yield another structure since the dG
distance between gestalts is (and must be) de�ned on GES. Intuitively, the
calculation of dG for two gestalts within a given composition is determined
by �rst taking the representatives (premotives within the composition) of
each gestalt, by looking at their shapes, and then by comparing not only all
these abstract premotives (from premotives within the score) but also all the
a priori imaginable (abstract) premotives with same gestalt, as fully used in
musicology when comparing sequences of tones together.

The following de�nition will be useful in the next section.

De�nition 10 Given a gestalt composition space (Ges?; T ?
t ) (with respect

to (MOT ?; T ?
t )) and a gestalt G 2 Ges?, the multiplicity of G, denoted

by multt;P;MOT ?(G) (or simply mult(G)), is the set cardinality of fM 2
MOT ? jM 2 Gg. We denote Ges?k := GESk \Ges?, and for each G 2 Ges?

and � > 0,
U?
� (G) := U�(G) \Ges?:

2.5 First Properties of Motivic Topologies

We have a look at some properties of our motivic spaces, for which we omit
the proofs [4]. For calculation reason in the next sections we choose to work
on GES and on Ges?. It is however clear that all the following can be easily
`translated' into MOT and MOT ?.

Proposition 2 A motivic gestalt space (GES; Tt;Ges) is a T0-space and \al-
most T1-space", in the senses that given two gestalts G;H 2 GES such that
G 6@ H, there exists an open neighborhood of G which does not contain H.

Proposition 3 Given a motivic gestalt space (GES; Tt;Ges), and suppose
that all translations in time are elements of the paradigmatic group P , then
the topological space (GES; Tt;Ges) is irreducible [8], i.e. every non-empty
open set in GES is dense.

Proposition 4 Given a motivic gestalt space (GES; Tt;Ges) then the follow-
ing holds:

1. fGg = fH 2 GESjH @ Gg;
2. fGg = G, G 2 GES1:

GES satis�es the �rst axiom of countability, and if GES1 is composed of a
�nite collection of gestalts then it is clear the GES is compact.

We consider now a gestalt composition space (Ges?; T ?
t ). The space Ges

?

is T0 and \almost T1", compact, and satis�es the second axiom of countability
since Ges? is �nite by hypothesis.
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Proposition 5 Given a gestalt composition space (Ges?; T ?
t ), let the gestalt

G 2 Ges?nmax
where nmax = maxfcardt(G)jG 2 Ges?g. Then fGgT

?
t is

an irreducible component of Ges?. Moreover Ges? is sober [8], i.e. each
irreducible component contains one and only one generic gestalt.

3 Quantifying a Gestalt Composition Space

Through Presence and Content

Given a score and a selection MOT ? of premotives, we would like to extract
the motivic information of its gestalt composition space Ges? (for t, P , and d)
and this brings us to try to visualize Ges?. As we saw in the previous section,
the topological space Ges? is not an intuitive Haussdor� space. It is only
"almost T1" and therefore does not have a `standard' representation. This
motivates us to de�ne functions ("Presence" and \Content" [19]) in order
to extract some geometric information from Ges?. The MeloRubetter, simu-
lating a motivic analysis of a score in the software RUBATOr [26],[18], uses
the Mazzola presence and content function [19] for quantifying the motivic
topologies. Generalized associated presence and content functions, stress-
ing the asymmetry in a motivic topology, are reciprocal to each other, and,
when evaluated at the changing epsilons, generate vector spaces with same
dimensions.

3.1 Presence and Content Functions

We �rst try to extract the motivic information of a gestalt composition space.
The topological property \almost T1" (Proposition 2) of any Ges? means
that given a gestalt G1 and a second gestalt G2 2 Ges? such that G1 6@ G2,
there exists an open neighborhood around G1 that does not contain G2. If
cardt(G1) > cardt(G2), then for all � > 0, U?

� (G1) 63 G2. In addition, G1

and G2 cannot always be separated by two disjoint open neighborhoods.
These `separation' facts stress an asymmetric topological property between
gestalts, which one can also easily observe by looking at elements of the
open base fU�(G)gG2Ges?;�>0. This motivates our construction of the two
following functions in order to `quantify' a gestalt composition space: First
consider two gestalts G and H 2 Ges? and a neighborhood radius � > 0. If
H 2 U?

� (G), then one measures the presence of gestalt G in gestalt H (or,
with inversed roles: H being "contained" in G) by the intensity number

Int�;G(H) := cardfH�
@ Hj card(H�) = card(G) ^H� 2 U?

� (G)g �mult(H):

Remark that the gestalt H is not necessarily in Ges?cardt(G) and that is why

we consider small gestalts H� @ H in Ges?cardt(G) for which \H� 2 U?
� (G)"
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means that dG(H
�; G) < �. Since the higher cardinality di�erence between

G and H the higher the probability that small gestalts H� @ H have with G
the distance dG(H

�; G) < �, we weight the intensity by 1
2(cardt(H)�cardt(G))

. The
presence and the content of gestalt G in the whole topological space Ges?,
at neighborhood radius � > 0, is then de�ned by summing up its presence
(resp. content) in every gestalt of Ges?:

PresenceMaz(G; �) :=
P

H2U�(G)
1

2(cardt(H)�cardt(G))
� Int�;G(H)

ContentMaz(G; �) :=
P

G2U�(H)
1

2(cardt(G)�cardt(H)) � Int�;H(G)

These two functions are calledMazzola presence and content functions.
Clearly, this quanti�cation is not unique, and we give a generalized de�nition
of these two functions: We consider a gestalt composition space Ges?, i.e.
we �x a shape type t, a paradigmatic group P , and a pseudo-metric d such
that the hypothesis of Theorem 1 holds, together with a selection MOT ?

of premotives as described in de�nition 9. Let nmin := minfcardt(G)jG 2
Ges?g and nmax := maxfcardt(G)jG 2 Ges?g. For G;H 2 Ges? and � 2 R+,
we de�ne the neighborhood relation function:

NeiRel�(G;H) :=

�
1 if H 2 U?

� (G);
0 otherwise.

Let f; g; gnmin;nmax : N+ ! R+ and h; l : N ! R+ be positive real functions.
We shall se in the following that the Mazzola presence and content functions
are de�ned through f(n) = n and g; gnmin;nmax(n) = 1 for n 2 N+, and
l(n) = n and h(n) = 1

2n
for n 2 N. We de�ne �rst

Status : Ges? �! R+

G 7�! Status(G) := (gnmin;nmax Æ cardt)(G) � (g Æmult)(G):
Status is a gage function weighting the combinatorial preference of the gestalt
cardinalities (with respect to nmin and nmax) and certain multiplicities in the
topological space. We de�ne also

Evol : R �! R+

� 7�! Evol(�)

where Evol is of one of these forms:

Evol(�) :=

�
�k

(1 + �)k

for a k 2 Z. In the Mazzola functions we have Evol(r) = 1 for r 2 R+.
This function weights the cognitive tolerance for premotif similarity. It is
essential, for example, when observing the image of presence and content
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functions on radius intervals (and not only at �xed neighborhood radii). We
de�ne also

�cardh : Ges? �Ges? �! R+

(G;H) 7�! �cardh(G;H) := (h Æ�card)(G;H)

where �card(H;G) := jcardt(G) � cardt(H)j. This function adjusts the
combinatoric e�ect of the small gestalt relation with respect to the di�erence
of the gestalt cardinalities: the higher the di�erence the higher the probability
there is a small gestalt relation. Let

#l : Ges? �Ges? � R+ �! R+

(G;H; �) 7�! #l(G;H; �) := (l Æ#)(G;H; �)

where #(G;H; �) := cardfH� @ Hj card(H�) = card(G) ^ H� 2 U?
� (G)g,

and we set rel�(G;H) = #l(G;H; �) �NeiRel�(G;H). Then we de�ne

multf : Ges? �! R+

G 7�! multf (G) := (f Æmult)(G):
This function multf adjusts the weight of a gestalt with respect to its `size
as a point' in the topology. Finally let coef : Ges? ! R be a real function.
In the Mazzola presence and content functions we have coef(G) = 1 for
G 2 Ges?. The function coef is introduced for an extern weigthing on the
gestalts, i.e. when introducing datas coming from an extern analysis to our
topology.

De�nition 11 A presence function, denoted by Presence, is a real func-
tion on a gestalt composition space:

Presence : Ges? � R+ �! R

(G; �) 7�! Presence(G; �)

where Presence(G; �) := Evol(�) � Status(G) �PH2Ges? coef(H) � prG;�(H),
with

prG;�(H) := rel�(G;H) ��cardh(G;H) �multf(H)

for given functions Status; Evol;multf ;�cardh; coef , and rel as described
above. Similarly a content function, denoted by Content, is a real function
on a gestalt composition space:

Content : Ges? � R+ �! R

(G; �) 7�! Content(G; �)

where Content(G; �) := Evol(�) �Status(G) �PH2Ges? coef(H) � ctG;�(H), for
which

ctG;�(H) := rel�(H;G) ��cardh(G;H) �multf (H)
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for given functions Status; Evol;multf ;�cardh; coef , and rel as described
above.

Whenever Presence and Content are de�ned through same functions
Status, Evol, multf , rel, �cardh, and coef , we say that Content and
Presence are associated with each other.

3.2 Reciprocity between Associated Presence and Con-

tent Functions

Here are two results underlying the asymmetric character of a motivic topol-
ogy expressed through associated presence and content functions. The �rst
result is actually the exact statement about the asymmetry in Ges?.

Lemma 2 Given a gestalt composition space Ges?, consider a presence func-
tion Presence and its associated content function Content. The Reciprocity
between Presence and Content is expressed through

multf (H) � ctH;�(G) = prG;�(H) �multf(G)
The function Content can then be rede�ned as a `reciprocal' function of
Presence (and conversely!):

Content(G; �) := Evol(�)�Status(G)�
X

H2Ges?
coef(H)�

 
multf(H)

multf(G)
� (prH;�(G))

!

Proof: From the de�nition of associated presence and content functions we

have rel�(G;H) =
prG;�(H)

fmult(H)�f�card(G;H)
=

ctH;�(G)

fmult(G)�f�card(H;G) where
f�card(G;H) = f�card(H;G). �

We should observe in the `rede�nition of Content' that in comparison with
Presence the function Content contains also the function pr in the sum,
but the latter, in addition to the factor fmult(H)=fmult(G), has its gestalt
variables interchanged. In consequence, the sum is evaluated by varying the
index variable, a variable which is �xed in the Presence's sum.

For the next result we �x an � > 0, and we can write the image of Ges?

under the Presence function as

P� =

0
B@

Presence(G0; �)
...

Presence(Gk; �)

1
CA = Evol(�) � S �M� ��;

where S is the diagonal matrix with diagonal Status(G0); : : : ; Status(Gk),
�T =

�
coef(G0); : : : ; coef(Gk)

�
, M� = (prGi;�(Gj))0�i;j�k, and k + 1 =

card(Ges?).
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Theorem 2 Given a gestalt composition space Ges?, consider a presence
function Presence and its associated content function Content. Denote

C� =

0
B@

Content(G0; �)
...

Content(Gk; �)

1
CA

With the above notation, given an � > 0, if the matrix M� is invertible, then
there is an invertible (k + 1)� (k + 1)-matrix X� such that

XT
� S

�1C� = X�S
�1P�:

In particular, if Status = 1, then XT
� C� = X�P�.

Proof: By Lemma 2 we can write C� as

CT
� = Evol(�) ��T � � �M� � ��1 � S;

where � is the diagonal matrix with diagonal fmult(G0); :::; fmult(Gk).
Therefore, if X� = �M�1

� , we have

1
Evol(�)

S�1C� = ��1TMT
� �

T�T T

= ��1MT
� ��

= ��1MT
� �M

�1
� M��

= ��1MT
� �M

�1
� (M��)

= ��1MT
� �M

�1
� ( 1

Evol(�)
S�1P�)

= (M��
�1)T�M�1

� ( 1
Evol(�)

S�1P�)
= ((�M�1

� )�1)T�M�1
� ( 1

Evol(�)
S�1P�)

= ((�M�1
� )T )�1(�M�1

� )( 1
Evol(�)

S�1P�)
= (XT

� )
�1X�(

1
Evol(�)

S�1P�);

and this implies XT
� S

�1C� = X�S
�1P�. �

We are then interested in the invertibility of eachM� = (prGi;�(Gj))0�i;j�k,
� > 0, and this brings us to have a closer look at the function NeiRel since
that latter is a factor in the function pr. Recall that

NeiRel�(G;H) :=

�
1 if H 2 U?

� (G);
0 otherwise.

This `logical' function has properties for an axiomatic system behind premotif
similarity cognition (recall that the \�" value corresponds to the tolerance in
premotif similarity cognition) :

Proposition 6 Given a gestalt composition space Ges? let G;H 2 Ges? and
� > 0. Then
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1. If there exists an � > 0 such that NeiRel�(G;H) = NeiRel�(H;G) =
1, then cardt(G) = cardt(H), and if for all � > 0 NeiRel�(G;H) =
NeiRel�(H;G) = 1, then G = H;

2. If for all � > 0, NeiRel�(G;H) = 0, then cardt(G) > cardt(H). If
there exists an � > 0 such that NeiRel�(G;H) = 1, then cardt(G) �
cardt(H). If for all � > 0 NeiRel�(G;H) = 1, then G @ H;

3. If NeiRel�(G;H) = 1, then for all �0 � � > 0 NeiRel�0(G;H) = 1, and
if NeiRel�(G;H) = 0, then for all 0 < �0 � � NeiRel�0(G;H) = 0.

4. If cardt(G) 6= cardt(H), then

NeiRel�(G;H) = 1 ) NeiRel�(H;G) = 0:

The inverse implication to the above property 4 is however false:

NeiRel�(G;H) = 0 ; NeiRel�(H;G) = 1;

since NeiRel�(G;H) = 0 means that H 62 U?
� (G), but it could happen that

H 2 U?
�0(G) for an �0 > �, and in this case, if card(G) 6= card(H), then we

necessarily have NeiRel�(H;G) = 0.
Most of all the above properties of NeiRel reveal how the matrices M�,

� > 0, look like: Given a gestalt composition space Ges? (with maximal resp.
minimal abstract cardinality n0max resp. n

0
min) and for each � > 0, the matrix

M� has the shape

M� =

0
BBB@

B�;0 � � �
0 B�;1 � �
... 0

. . . �
0 ::: 0 B�;n

1
CCCA

with zeros below the diagonal of block matrices B�;i and for which n + 1 =
n0max � n0min + 1. By the above proposition, each block matrix (B�;k)i;j =
(prGi;�(Gj))0�i;j;�pk, where pk = set cardinality of Ges?k+1, is `almost sym-
metric' in the sense that B�;k

i;i > 0, and if B�;k
i;j = 0 then B�;k

j;i = 0, and if
B�;k

i;j 6= 0 then B�;k
j;i 6= 0. The matrix M� is therefore invertible if and only

if each block matrix (B�;k
i;j)0�i;j;�pk is invertible and this is not always the

case. However, for each gestalt composition space there exists an �� > 0 such
that M�� is invertible: since Ges

? is �nite, for all k 2 fn0min; :::; n
0
maxg, there

exists an �� > 0 such that for all G1 6= G2 2 Ges?k, NeiRel��(G1; G2) = 0.
Each block matrix (B��;k

i;j)0�i;j;�pk is therefore diagonal andM�� is invertible.
At this small radius �� > 0, the �-neighborhood of a gestalt G contains

only G and all gestalts for which G is a small gestalt. When considering
presence and content at this radius, this means that no variation of a premotif
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is allowed in order to `group' premotives: only imitation and subpremotif
relations are tolerated. We can conlude that the invertibility of a matrix M�

could be associated with the intolerance for premotif similarity cognition.
Theorem 2 could then state that, in the case of premotif similarity cog-

nitive intolerance, associated Presence and Content can be reduced to each
other by transformation on a combinatorial level.

3.3 Vector Spaces: Reciprocal Functions|Same Di-

mensions

We have expressed (and quanti�ed) the asymetric property of motivic topolo-
gies through associated presence and content functions, functions that are
then reciprocal from each other. As a consequence of their reciprocity, the
two vector spaces, one generated by the `�i-evaluated presence functions' and
the other by the `�i-evaluated content functions' , have same dimensions.

Consider a gestalt composition space Ges?. Recall that Ges? is �nite, and
that neighborhoods of gestalts stay constant for `more or less small' intervals.
That is to say that there is a �nite sequence of neighborhood radii �i where
neighborhoods change: We say that the radius � is a changing epsilon
(for Ges?) if there exist gestalts G;H 2 Ges? such that NeiRel�(G;H) <
NeiRel�0(G;H) for any �0 > �. Let seq = f�0; �1; :::; �n�1; �ng be the set of all
n changing epsilons, �i < �i+1 for all 0 � i � n� 2 and setting �n := �n�1+1.
We add �n in order to have a complete representation of the neighborhoods'
evolution. We observe that for all G 2 Ges?; H 2 U?

�0(G) is equivalent to
H A G, and for all gestalts H;G 2 Ges?; H 2 U?

�n(G) or G 2 U?
�n(H):

To maintain the �nite (topological) character within the presence and
content functions, we make the hypothesis that the function Evol is locally
constant, i.e., constant on the intervals (0; �0], (�i�1; �i] for i = 1; :::; n, and
(�n; �n + 1]. Recall that the factor function Evol was introduced in order to
weight the presence and the content of a gestalt with respect to the considered
radius, the latter corresponding to the cognitive tolerance to link two similar
premotives (or gestalts). The above hypothesis on Evol means that we take
into account only those epsilons where changes appear in the neighborhoods
of gestalts. In other words, it means that the presence (and content) of a
gestalt should stay constant until new gestalts appear in some neighborhoods.

We next consider the collection of �i-evaluated presence functions pi:

fpi : Ges? ! Rgi2f0;1;:::;ng
where for each �i 2 seq, pi(G) := Presence(G; �i) for allG 2 Ges?. Similarly,
given a function Content, we have the collection of �i-evaluated content
functions ci

fci : Ges? ! Rgi2f0;1;:::;ng
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where for each �i 2 Seq, ci(G) := Content(G; �i) for all G 2 Ges?.
Our calculations for di�erent scores suggest that this following conjecture

holds.

Conjecture 1 Given a gestalt composition space Ges? with changing ep-
silons �0; :::; �n�1 plus �n = �n�1+1, let Presence be a presence function with
its associated content function Content in which the factor function Evol is
locally constant as described above, and coef = 1. Let A be an open set in
Ges? and denote Api = pijA and Aci = cijA where pi and ci are respectively
the �i-evaluated Presence and Content functions. Then

dim
�
R(Ap0; :::; Apn)

�
= dim

�
R(Ac0; :::; Acn)

�
:

In particular it holds for A = Ges?.

Example 9 Consider the gestalt composition space of the eight-tone main
theme of Bach's "Kunst der Fuge", for which the motivic topology is de�ned
by the COM-matrix shape type, the paradigmatic group P = fidg, and the
relative Euclidean metric REd on �Com (see next section for details on the
motivic topology). There are 119 gestalts and 107 changing epsilons. If we
consider the presence and content functions PresenceMaz and ContentMaz

we obtain

Dim
�
R(p0; :::; p107)

�
= Dim

�
R(c0; :::; c107)

�
= 96;

and for A = U�0(Gestalt 4-14) (see Figure 3 for a representation of gestalt
`4-14'),

Dim
�
R(Ap0; :::; Ap107)

�
= Dim

�
R(Ac0; :::; Ac107)

�
= 18:

We observe that the �i-evaluated presence functions p0; p1; :::; and pn de-
scribe all together a whole picture of motivic structure in a score since they
model each level of motivic similarity cognition. We can then interprete the
dimension of such a vector space R(p0; :::; pn) as a measure of the motivic
richness of a score. With a `high' dimension this would mean that `many'
gestalts generate the score. Theorem 1 says that both functions, Presence
and Content, i.e. when considering similarity as `being almost contained
in' or as `containing almost', express the same level of richness of motivic
structure.

4 Construction of Motivic Evolution Trees

This section gives the mathematical construction of a motivic evolution tree
(MET), a concept that is related to the sytematic variation of the similarity
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parameter (neighborhood radius) of motivic analysis (gestalt motivic space),
and that was intuitively introduced in [5].

We combine associated presence and content functions together as a
weight function in order to obtain a `global' topological information, and
then by de�ning the Qual function we obtain a simpler `global' topological
information: which gestalts are the heaviest? The Qual function could be
seen as a \coarse" weight function for which an essential motivic information
is in the prominent position. Then it can be `visualized' through the intuitive
representation, a motivic evolution tree (MET), of the Qual function. As an
application of these METs we adressed [5] the still debated question on the
length of Bach's Kunst der Fuge main theme.

4.1 Weight Function

We have built in the last section two functions, Presence and (associated)
Content, which are reciprocal from each other, in the sense that they quantify
an `opposite' motivic information from Ges?. We combine now these two
`partial' quanti�cations into a global one through a weight function.

De�nition 12 Given a gestalt composition space Ges?, a weight function
on Ges? is a real function

Weight : Ges? � R+ �! R

(G; �) 7�! Weight(G; �)

where Weight(G; �) is of one of these forms:

Weight(G; �) :=

�
(Presencek � Contentl)(G; �) for a k and l 2 Z,
(Presencek + Contentl)(G; �) for a k and l 2 Z;

and where Presence and Content are associated presence and content func-
tions.

Example 10 The Mazzola weight function is

WeightMaz := PresenceMaz � ContentMaz

4.1.1 Mazzola Weight Function on Bach's Kunst der Fuge

This example was programmed in Mathematicar. The set MOT ? of pre-
motives to be analyzed contains all the possible 2- to 8-tone premotives in
the 8-tone main theme of Kunst der Fuge (see Figure 1). We choose the
COM-Matrix shape type, the paradigmatic group is P = fidentityg, and
the distance dt;n =

p
2 � REdn. The minimal gestalt distance between two

premotives of di�erent gestalts is 0.202, and the maximal one is 1.732.
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In our �rst attemp to visualize the motivic topology (and hierarchy) of the
8-tone main theme of Kunst der Fuge, we consider graphs of WeightMaz in-
terpolations at �xed neighborhood radii: we order the premotives according
to their cardinality, and for �xed cardinality, we order them lexicographi-
cally with respect to the temporal order of their tones. We then arrange
the premotives on a grid where the �rst coordinate indicates the premotives'
cardinalities, whereas the second coordinate indicates their lexicographic or-
der. Of course, this premotif order is a strictly graphical device and does not
in
uence the topology nor the premotif weights. Finally WeightMaz, which
is de�ned on the discrete set of premotives, is evaluated at a �xed neigh-
borhood radius and then is interpolated to a continuous surface in order to
make evident the overall weight distribution.

For example, when �xing the neighborhood radius at 0:85 we obtain the
weight interpolation surface as shown in Figure 2.
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FIGURE 2. This �gure shows the interpolation of the functionWeightMaz

evaluated at neighborhood radius 0.85 and at the (discrete) set of premo-
tives in the 8-tone main theme of Bach's Kunst der Fuge. For both graphics
premotives are arranged in a grid, with horizontal axis for cardinality, and
vertical axis for the lexicographic order (the lexicographic scale numbers are
not relevant). The graphic at the top is the graph of the interpolation for
which peaks show premotives with high weights. In the bottom graphic, the
premotives are represented as a set of small white points and the surface
grey levels indicate relative weights: High weights are shown in light grey,
low weights appear in dark grey.

If we come back to the initial goal of this motivic model we would like
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to say that the `signi�cant premotives' (`the' motives in musicology) are
the ones represented by peaks in �gure 2. More precisely, these two above
graphics give us a picture of the motivic structure (with respect to t = Com,
P = fidentityg, and dCom =

p
2 � REd) at neighborhood radius 0.85 of the

8-tone main theme of Kunst der Fuge. This brings then the problem of
choosing an `adequate' neighborhood radius before determining the `signi�-
cant premotives'. But with which criterium? And wouldn't a neighborhood
radius interval be more adequate? These non-trivial questions are in the do-
main of cognitive science and cannot be answered in this paper. Therefore,
we cannot use this vizualization for extracting the motivic information from
our motivic topologies. If we do not however pick a neighborhood radius,
if we consider all neighborhood radii, then we reach our goal and have an
overall motivic picture of a score.

4.2 Qual Function

We would like to describe the entire `spectrum' of `simple' weight landscapes
as it is produced when one moves along the axis of neighborhood radii. This
motivates the construction of the qualitative function (Qual) of Weight and
of its intuitive vizualization through a motivic evolution tree.

Let A be a �nite set of real numbers. Consider the function

Order : R
A �! N

A

(xa)a2A 7�! (ya)a2A

where ya is the rank of xa in the ordered (with respect to the relation �)
sequence of the xa. If xa = xb, then ya = yb.

Fix a t 2 [0; 1]. Consider now the function

TrOrt : N
A �! [0; 1]A

(na)a2A 7�! (trort(na))a2A

where

trort =

�
1=na if 1=na � t;
0 otherwise.

We can now combine these two de�nitions to the weight function:

De�nition 13 Given a gestalt composition space Ges? and a Weight func-
tion, consider the function QualWeight;Ges? = Qual:

Qual : R+ � [0; 1] �! [0; 1]Ges
?

(�; t) 7�! TrOrt ÆOrder
�
(Weight(�; GH))H2Ges?

�
This function is called the qualitative function (of Weight to Ges?). We
call the inversed parameter tol := 1=t the tolerance for Qual.
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We suppose that the function Evol is locally constant (as described in
section 3.3) and that Ges? has n changing epsilons (i.e. jseqj = n + 1), and
we �x a tolerance tol = 1=t. The qualitative function can then be simpli�ed
in this case to

Qualt : f0; 1; :::; ng �! [0; 1]Ges
?

i 7�! Qual(�i; t)

where �i 2 seq. By construction of the qualitative function we observe that
such an image Qualt(i) is a vector with jGes?j coordinates whose values
are 1; 1=2; : : : ; 1=t and 0 (but not necessarly in this order). Therefore the
Qualt's images are vectors positioned on faces of the multidimensional unit
cube [0; 1]Ges

?

. In order to visualize the image of Qualt, or more speci�cally,
the information carried by the image of Qualt, we build a motivic evolution
tree in the following subsection.

4.2.1 Motivic Evolution Tree (MET)

We give a short description of a motivic evolution tree. For more details refer
to [5].

We are interested in an `intuitive' visualization of these Qualts images,
representation that we call a motivic evolution tree: Fix a tolerance tol. We
construct the coordinate system for which in the vertical axis we consider
the radius variable (growing from top to bottom), and in the horizontal axis
the gestalt cardinality variable. For each Qualt(i), we consider only gestalts
G0; :::; Gk for which Qualt(i)Gj

6= 0, for j = 0; :::; k. We represent all these
gestalts Gj at coordinate (cardt(Gj); �i). These gestalts Gj are ordered by
their Qualt(i)Gj

values, and this order is represented by the grey intensity
(value 1: black; value 0: white) of their gestalt representation. Then we
link gestalts which are small gestalts from each other. Since this relation
is transitive we link only gestalts with consecutive cardinalities. We don't
repeat gestalts at consecutive Qualt(i)s.

De�nition 14 Given a score S together with a motivic gestalt space Ges?

and a tolerance tol, the (above described) intuitive representation of the Qualt
function is called the motivic evolution tree (MET) of S with respect
to Ges?.

Example 11 We consider again Bach's Kunst der Fuge with motivic topol-
ogy as described at section 4.1.1. We �x tol = 2. Because of calculation con-
traints we evaluated the Qual1=2 at selected radii r = 0:2; 0:25; : : : 1:65. The
black gestalt representatives have value 1 in their respective vector Qual1=2,
the grey ones value 1=2. Recall that the vertical axis corresponds to the
neighborhood radius variable and the horizontal one, to the gestalt cardinal-
ity variable. At each neighborhood radius corresponds gestalts (recall that
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this representation of gestalts is for the COM-Matrix shape type and for the
paradigmatic group P = fidentityg) for which the above 
ag corresponds
to its `identity' number (e.g. "3-13" stands for the 13th gestalt in the lexi-
cographically ordered list of gestalts with cardinality 3) and the below 
ag,
its multiplicity. Dashed boxes around a gestalt means that the latter has
already appeared in the MET at smaller neighborhood radius.
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FIGURE 3. This graphic shows the motivic evolution tree (MET), an
intuitive visualization of the Qualt's (for WeightMaz) image, at tolerance 2,
of the 8-tone main theme of Bach's Kunst der Fuge. As a global information
from this tree, we should understand: When looking from top to bottom, i.e.
when the neighborhood radius (similarity allowance) is growing, we view (in
black) the evolution of the score's motif gestalt obtained from our motivic
analysis.
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As an application of this intuitive representation of a motivic space of
a score we compared [5] Bach's Kunst der Fuge 8-tone and 12-tone main
themes together in order to address the still debated question concerning
the length of the main theme. We concluded that \the signi�cant contours
(gestalts) of the 8-tone theme (subspace of the 12-tone theme) are part of
the signi�cant contours of the 12-tone theme, but the last four notes do not
generate a proper extension to the set of signi�cant premotives. However,
the last four tones are all related to the signi�cant contours of the 12-tone
theme. In other words, the extension to twelve tones is \substantial", but it
is not a proper extension [5]". 3

3Special Aknowledgements go to Guerino Mazzola for his continuous support and pre-
cious directorship, and to Markus Brodmann for his engaged support of my research.
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