Molson Indy Math Trail - Car and Fan Consumption Solutions

Methanol and Tire Costs on Race Day

1. A set of tire costs $\mathbf{\$ 1 2 0 0}$. A full tank of methanol costs $\mathbf{3 5}$ gallons (tank size) \mathbf{x} $\mathbf{\$ 1 . 5 0}$ per gallon (cost of methanol) = \$52.50. The combined cost is $\mathbf{\$ 1 2 0 0 ~ + ~}$ $\mathbf{\$ 5 2 . 5 0}=\mathbf{\$ 1 2 5 2 . 5 0}$
2. On a full tank a car can go: $\mathbf{3 5}$ gallons $\mathbf{x} \mathbf{2}$ miles/gallon (car mileage) $=\mathbf{7 0}$ miles. This equates to $\mathbf{7 0}$ miles $\div \mathbf{1 . 7 8 1}$ miles (distance of one lap) $=\mathbf{3 9 . 3 0}$ laps If the car can go 39.3 laps, it should head into the pit at $\mathbf{3 9}$ laps. If it goes any farther it will run out of gas on the $40^{\text {th }}$ lap.
How many times should the race car head into the pits? 100 laps (amount of laps in race) $\div \mathbf{3 9}$ laps $=\mathbf{2 . 6}$ The car should pit stop twice, at lap 39 and again at $39+39=78$ laps. It does not need to pit again since $78+39=117$ laps.
3. Cost of tires is $\mathbf{\$ 1 2 0 0}$.

Fuel in tank when car enters pits: $\mathbf{3 9}$ laps $\mathbf{x} \mathbf{1 . 7 8 1}$ miles $\mathbf{=} \mathbf{6 9 . 4 6}$ miles travelled in 39 laps
$\mathbf{6 9 . 4 6}$ miles $\div \mathbf{2}$ miles/gallon $=\mathbf{3 4 . 7 3}$ gallons of methanol used
35 gallons $\mathbf{- 3 4 . 7 3}$ gallons $=\mathbf{0 . 2 7}$ gallons left in tank at pit stop
Cost to fill tank: Need to add 34.73 gallons $\mathbf{x} \$ 1.5$ per gallon $=\mathbf{\$ 5 2 . 0 9}$
Total cost at each pit stop: $\mathbf{\$ 1 2 0 0}$ (tires) + \$52.09 (methanol) = \$1252.09
Total cost at all pit stops: $\mathbf{2}$ pits stops in race $\mathbf{x} \$ 1252.09=\mathbf{2 5 0 4 . 1 8}$
4. Any methanol left in tank at end of race: Yes, after second pit stop, there is $100-78$ laps $=22$ laps to go.
22 laps x 1.781 miles $=\mathbf{3 9 . 1 8}$ miles travelled on last full tank
39.18 miles $\div 2$ miles/gallon $=19.59$ gallons used
$\mathbf{3 5}$ gallons $\mathbf{- 1 9 . 5 9}$ gallons $=\mathbf{1 5 . 4 1}$ gallons left in tank at finish line
5. Total cost of methanol and tires for entire race:
$\mathbf{\$ 1 2 5 2 . 5 0}$ (initial cost of full tank and tires at start, \#1)

+ \$2504.18 (total cost of both pit stops, \#3)
- (15.41 gallons fuel left over at finish $\mathbf{x} \$ 1.5$ per gallon) = \$3733.57

Fan Consumption at the Concessions

1. All possible food and beverage combinations.

Food Item Combo	Total Cost (\$)	Total Energy (calories)	Total Fat (grams)
(1) 1 nachos, 1 hot dog, 1 water	10	1100	73
(2) 1 nachos, 1 peanuts, 1 water	9	850	67
(3) 1 hot dog, 1 peanuts, 1 water	8	950	58
(4) 2 hot dogs, 1 water	9	1200	64
(5) 3 peanuts, 1 water	10	1050	78
(6) 1 nachos, 1 peanuts, 1 milk	10	1050	78
(7) 2 hot dogs, 1 milk	10	1400	75
(8) 1 hot dog, 1 peanuts, 1 milk	9	1150	69
(9) 2 peanuts, 1 milk	8	900	63

2. There are nine different combinations.

Three involve nachos, six involve peanuts, five involve hot dogs, four involve milk, and five involve water.
3. The least you could spend on a combo is eight dollars. The most is ten dollars. The average cost of a combo is $\mathbf{1 0}+\mathbf{9 + 8 + 9 + 1 0 + 1 0 + 1 0 + 9 + 8 = 8 3}$ $\mathbf{8 3} \div 9=\$ 9.22$
$\mathbf{1 6 1 , 0 0 0}$ (fans) $\mathbf{x} \$ 9.22=\mathbf{\$ 1 , 4 8 4 , 4 2 0 . 0 0}$ is the money that would be spent on concessions at the Molson Indy!!
Line of Hot Dogs!!: 161,000 x 6 inches $=\mathbf{9 6 6 , 0 0 0}$ inches
$\mathbf{9 6 6 , 0 0 0}$ inches $\div \mathbf{1 2}$ inches/foot $=\mathbf{8 0 , 5 0 0}$ feet
$\mathbf{8 0 , 5 0 0}$ feet $\div \mathbf{5 2 8 0}$ feet $/ \mathrm{mile}=\mathbf{1 5 . 2 4 6}$ miles
$\mathbf{1 5 . 2 4 6}$ miles $\div \mathbf{1 . 7 8 1}$ miles (one lap of course) $=\mathbf{8 . 5 6}$ laps of Hot Dogs on the course!!!
4. Combo with most calories: $\mathbf{2}$ hot dogs, $\mathbf{1}$ milk $=\mathbf{1 4 0 0}$ calories

Combo with least calories: 1 nachos, 1 peanut, 1 water $=\mathbf{8 5 0}$ calories
Combo with most calories per dollar spent: $\mathbf{2}$ hot dogs, $\mathbf{1}$ milk
1400 calories $\div \mathbf{\$ 1 0}=\mathbf{1 4 0}$ calories per $\$ 1$ spent
Combo with least calories per dollar spent: 1 nachos, 1 peanuts, 1 water 850 calories $\div \$ 9=94.44$ calories per $\$ 1$ spent
5. Combo with least fat: $\mathbf{1}$ hot dog, $\mathbf{1}$ peanuts, $\mathbf{1}$ water is $\mathbf{5 8}$ grams of fat Combo with most fat: There are two combos with 78 grams of fat, 1) 3 peanuts, 1 water, and 2) 1 nachos, 1 peanuts, 1 milk

