Dr. George van der Merwe

Dr. George van der Merwe

CCOVI Fellow
Associate Professor of Molecular & Cellular Biology
College of Biological Science, University of Guelph, Guelph, Ont.
Email: gvanderm@uoguelph.ca
Phone: 519-824-4120 x54298
Fax: 519-837-1802

BSc, University of Stellenbosch, Stellenbosch, South Africa
PhD, University of Stellenbosch, Stellenbosch, South Africa
Research Associate, University of British Columbia, Vancouver, BC

Introductory Cell Biology
Molecular & Cell Biology of Yeast

Wine yeasts are confronted with an array of challenging conditions during vinification. Limiting nutrients, osmotic stress-inducing concentrations of sugars, antimicrobial agents such as killer toxins and fungicides, and increasing concentrations of ethanol produced during the fermentation are some of the stresses wine yeasts have to overcome. The molecular adaptations to these stresses include alterations in the transcriptome and proteome of the yeast. Such changes inadvertently affect the metabolome of the yeast. My laboratory focuses on understanding the molecular mechanisms that: (1) enable the adaptation of yeast to fermentation-related stresses, and (2) link molecular adaptation and metabolite production. Knowledge generated from this research would enable us to devise strategies to improve the stress tolerance, vitality, and efficiency of yeast during its performance of alcoholic fermentations.

Selected Publications and Presentations

  • Christopher Snowdon, Ryan Schierholtz, Peter Poliszczuk, Stephanie Hughes, and George van der Merwe. 2009. ETP1 HL010c is a novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol. FEMS Yeast Res. 9:372-380. 
  • Chris Hlynialuk, Ryan Schierholtz, Amanda Vernooy, and George van der Merwe 2008. Nsf1p/Ypl230wp participates in transcriptional activation during non-fermentative growth and in response to salt stress in Saccharomyces cerevisiae. Microbiology 154:2482-2491. 
  • Chris Snowdon, Chris Hlynialuk, and George van der Merwe. 2008. Components of the Vid30c are needed for the rapamycin-induced degradation of the high-affinity hexose transporter Hxt7 in Saccharomyces cerevisiae. FEMS Yeast Res. 8:204-216. 
  •  Virginia D Marks, Shannan J Ho Sui, Daniel Erasmus, George K van der Merwe, Jochen Brumm, Wyeth W Wasserman, Jenny Bryan, and Hennie J J van Vuuren. 2008. Dynamics of the Yeast Transcriptome During Wine Fermentation Reveals the Fermentation Stress Response. FEMS Yeast Res.8:35-52. 
  • Joana Coulon, John I Husnik, Debra L Inglis, George K van der Merwe, Aline Lonvaud, Daniel J Erasmus and Hennie J J van Vuuren. 2006. Metabolic engineering of Saccharomyces cerevisiae to minimize the productionof ethyl carbamate in wine. Am. J. Enol. Vitic. 57(2):113-124.


Dr. George van der Merwe